A Minimum Error-Based PCA for Improving Classifier Performance in Detecting Financial Fraud
(1) Financial Transaction Reports and Analysis Center
(2) Department of Electrical and Information Engineering, Universitas Gadjah Mada
(3) Department of Electrical and Information Engineering, Universitas Gadjah Mada
Abstract
Keywords
Full Text:
PDFReferences
N. S. Alfaiz and S. M. Fati, “Enhanced Credit Card Fraud Detection Model Using Machine Learning,” Electronics, vol. 11, no. 662, pp. 1–16, 2022, doi: https://doi.org/10.3390/electronics11040662.
W. Hilal, S. A. Gadsden, and J. Yawney, “Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances,” Expert Syst. Appl., vol. 193, p. 116429, 2022, doi: 10.1016/j.eswa.2021.116429.
S. Stefanov, D. Georgieva, and J. Vasilev, “Issues in the Disclosure of Financial Information by Multinational Enterprises,” TEM J., vol. 11, no. 1, pp. 5–12, 2022, doi: 10.18421/TEM111-01.
T. Le, “A comprehensive survey of imbalanced learning methods for bankruptcy prediction,” IET Commun., vol. 16, no. 5, pp. 433–441, 2022, doi: 10.1049/cmu2.12268.
A. Oza, “Fraud Detection using Machine Learning,” Stanford Univ. CS229 Proj. Publ., vol. 261, pp. 1–6, 2018.
R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui, “A Comparative Evaluation of Outlier Detection Algorithms: Experiments and Analyses,” Pattern Recognit. J., vol. 74, pp. 406–421, 2018, doi: https://doi.org/10.1016/j.patcog.2017.09.037.
A. O. Adewumi and A. A. Akinyelu, “A Survey of Machine Learning and Nature-Inspired Based Credit Card Fraud Detection Techniques,” Int J Syst Assur Eng Manag 8, vol. 8, pp. 937–953, 2017, doi: https://doi.org/10.1007/s13198-016-0551-y.
E. A. Lopez Rojas, S. Axelsson, and D. Baca, “Analysis of Fraud Controls using the PaySim Financial Simulator,” Int. J. Simul. Process Model., vol. 13, no. 4, pp. 377–386, 2018, doi: 10.1504/ijspm.2018.10014984.
E. A. Lopez-Rojas and C. Barneaud, “Advantages of the PaySim Simulator for Improving Financial Fraud Controls,” Springer Nat. Switz. AG 2019, vol. 998, pp. 727–736, 2019, doi: 10.1007/978-3-030-22868-2_51.
E. A. Lopez-Rojas, A. Elmir, and S. Axelsson, “PaySim: A Financial Mobile Money Simulator for Fraud Detection,” Eur. Model. Simul. Symp., no. c, pp. 249–255, 2016.
B. N. Pambudi, I. Hidayah, and S. Fauziati, “Improving Money Laundering Detection Using Optimized Support Vector Machine,” 2019 Int. Semin. Res. Inf. Technol. Intell. Syst., pp. 273–278, 2019, doi: 10.1109/ISRITI48646.2019.9034655.
R. Pech, “Fraud Detection in Mobile Money Transfer as Binary Classification Problem,” Eagle Tech. Inc Publ., pp. 1–15, 2019.
H. Ubaya and R. S. Juairiah, “Performance of RUS and SMOTE Method on Twitter Spam Data Using Random Forest,” J. Phys. Conf. Ser., vol. 1500, no. 1, pp. 1–8, 2020, doi: 10.1088/1742-6596/1500/1/012130.
G. Pang, C. Shen, L. Cao, and A. Van Den Hengel, “Deep Learning for Anomaly Detection: A Review,” ACM Comput. Surv., vol. 54, no. 2, pp. 1–38, 2022, doi: https://doi.org/10.1145/3439950.
Z. Fan et al., “Modified Principal Component Analysis: An Integration of Multiple Similarity Subspace Models,” IEEE Trans. Neural Networks Learn. Syst., vol. 25, no. 8, pp. 1538–1552, 2014.
D. J. J. Farnell, H. Popat, and S. Richmond, “Multilevel Principal Component Analysis (mPCA) in Shape Analysis: A Feasibility Study in Medical and Dental Imaging,” Comput. Methods Programs Biomed., 2016, doi: 10.1016/j.cmpb.2016.01.005.
S. Guo, P. Rösch, J. Popp, and T. Bocklitz, “Modified PCA and PLS: Towards a Better Classification in Raman Spectroscopy – based Biological Applications,” J. Wiley Chemom., no. October 2019, pp. 1–10, 2020, doi: 10.1002/cem.3202.
A. Salehi, M. Ghazanfari, and M. Fathian, “Data Mining Techniques for Anti Money Laundering,” Int. J. Appl. Eng. Res., vol. 12, no. 20, pp. 10084–10094, 2017.
A. Rojas-Domínguez, L. C. Padierna, M. J. Carpio Valadez, H. J. Puga-soberanes, and H. J. Fraire, “Optimal Hyper-Parameter Tuning of SVM Classifiers With Application to Medical Diagnosis,” IEEE Open Access J., vol. 6, no. March 9, 2018, pp. 7164–7176, 2018, doi: 10.1109/ACCESS.2017.2779794.
M. Riera, J. M. Arnau, and A. González, “DNN Pruning with Principal Component Analysis and Connection Importance Estimation,” J. Syst. Archit., vol. 122, p. 102336, 2022, doi: 10.1016/j.sysarc.2021.102336.
C. He, J. Li, W. Liu, and J. Peng, “A Low-Complexity Quantum Principal Component Analysis Algorithm,” Quantum Comput., vol. 3, pp. 1–13, 2022, doi: 10.1109/TQE.2021.3140152.
N. Bhargava, A. Kumar, D. Kumar, and Meenakshi, “A Modified Concept of PCA to Reduce the Classification Error using Kernel SVM Classifier,” Int. J. Sci. Eng. Res., vol. 6, no. 6, pp. 1509–1513, 2015.
T. Saito and M. Rehmsmeier, “The Precision-Recall Plot is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets,” PloS one. 10. e0118432, pp. 1–21, 2015, doi: 10.1371/journal.pone.0118432.
M. B. Abidine, B. Fergani, and F. J. Ordóñez, “Effect of Over-sampling Versus Under-sampling for SVM and LDA Classifiers for Activity Recognition,” Int. J. Des. Nat. Ecodynamics, vol. 11, no. 3, pp. 306–316, 2016, doi: 10.2495/DNE-V11-N3-306-316.
Refbacks
- There are currently no refbacks.