Classroom Occupancy Monitoring System using IoT Device and the k-Nearest Neighbors Algorithm
(1) Universitas Diponegoro
(2) Universitas Diponegoro
(3) Universitas Diponegoro
Abstract
Keywords
Full Text:
PDFReferences
K. Rastogi and D. Lohani, “IoT-based Indoor Occupancy Estimation Using Edge Computing,” Procedia Comput. Sci., vol. 171, pp. 1943–1952, Jan. 2020, doi: 10.1016/j.procs.2020.04.208.
V. Chidurala and X. Li, “Occupancy Estimation Using Thermal Imaging Sensors and Machine Learning Algorithms,” IEEE Sens. J., vol. 21, no. 6, pp. 8627–8638, 2021, doi: 10.1109/JSEN.2021.3049311.
A. Vela, J. Alvarado-Uribe, M. Davila, N. Hernandez-Gress, and H. G. Ceballos, “Estimating Occupancy Levels in Enclosed Spaces Using Environmental Variables: A Fitness Gym and Living Room as Evaluation Scenarios,” Sensors (Switzerland), vol. 20, no. 22, pp. 1–21, 2020, doi: 10.3390/s20226579.
J. Wang, N. C. F. Tse, T. Y. Poon, and J. Y. C. Chan, “A Practical Multi-sensor Cooling Demand Estimation Approach Based on Visual, Indoor and Outdoor Information Sensing,” Sensors (Switzerland), vol. 18, no. 11, p. 3591, 2018, doi: 10.3390/s18113591.
K. Mjörnell, D. Johansson, and H. Bagge, “The Effect of High Occupancy Density on IAQ, Moisture Conditions and Energy Use in Apartments,” Energies, vol. 12, no. 23, pp. 1–11, 2019, doi: 10.3390/en12234454.
P. Anand, C. Deb, K. Yan, J. Yang, D. Cheong, and C. Sekhar, “Occupancy-based Energy Consumption Modelling Using Machine Learning Algorithms for Institutional Buildings,” Energy Build., vol. 252, no. 4, p. 111478, 2021, doi: https://doi.org/10.1016/j.enbuild.2021.111478.
S. Zemouri, Y. Gkoufas, and J. Murphy, “A Machine Learning Approach to Indoor Occupancy Detection Using Non-intrusive Environmental Sensor Data,” ACM Int. Conf. Proceeding Ser., pp. 70–74, 2019, doi: 10.1145/3361758.3361775.
S. Taheri and A. Razban, “Learning-based CO2 Concentration Prediction: Application to Indoor Air Quality Control Using Demand-Controlled Ventilation,” Build. Environ., vol. 205, no. 2, p. 108164, 2021, doi: 10.1016/j.buildenv.2021.108164.
C. Jiang, Z. Chen, R. Su, M. K. Masood, and Y. C. Soh, “Bayesian Filtering For Building Occupancy Estimation From Carbon Dioxide Concentration,” Energy Build., vol. 206, p. 109566, 2020, doi: 10.1016/j.enbuild.2019.109566.
Y. Zhou et al., “A Novel Model Based on Multi-Grained Cascade Forests with Wavelet Denoising for Indoor Occupancy Estimation,” Build. Environ., vol. 167, no. 10, p. 106461, 2020, doi: 10.1016/j.buildenv.2019.106461.
S. Kumar, J. Singh, and O. Singh, “Ensemble-based Extreme Learning Machine Model For Occupancy Detection with Ambient Attributes,” Int. J. Syst. Assur. Eng. Manag., vol. 11, no. 2, pp. 173–183, 2020, doi: 10.1007/s13198-019-00935-1.
Y. R. Carrillo-Amado, M. A. Califa-Urquiza, and J. A. Ramón-Valencia, “Calibration and Standardization of Air Quality Measurements Using MQ Sensors,” Respuestas, vol. 25, no. 1, pp. 70–77, 2020, doi: 10.22463/0122820x.2408.
M. Sebayang, “Stasiun Pemantau Kualitas Udara Berbasis Web,” J. INFORMATICS Telecommun. Eng., vol. 1, no. 1, pp. 24–33, Sep. 2017, doi: 10.31289/jite.v1i1.571.
L. Schibuola and C. Tambani, “Indoor Environmental Quality Classification of School Environments by Monitoring PM and CO2 Concentration Levels,” Atmos. Pollut. Res., vol. 11, no. 2, pp. 332–342, 2020, doi: 10.1016/j.apr.2019.11.006.
S. Jayakumar and M. G. Apte, “Estimation and Analysis of Ventilation Rates in Schools in Indian Context: IAQ and Indoor Environmental Quality,” IOP Conf. Ser. Mater. Sci. Eng., vol. 609, no. 3, p. 032046, 2019, doi: 10.1088/1757-899X/609/3/032046.
B. Talarosha, “Konsentrasi CO2 pada Ruang Kelas dengan Sistem Ventilasi Alami sebuah Penelitian Awal,” J. Lingkung. Binaan Indones., vol. 6, no. 1, pp. 22–27, Apr. 2017, doi: 10.32315/jlbi.6.1.22.
D. Stjelja, J. Jokisalo, and R. Kosonen, “Scalable Room Occupancy Prediction with Deep Transfer Learning Using Indoor Climate Sensor,” Energies, vol. 15, no. 6, pp. 1–21, 2022, doi: 10.3390/en15062078.
A. Pandey and A. Jain, “Comparative Analysis of KNN Algorithm using Various Normalization Techniques,” Int. J. Comput. Netw. Inf. Secur., vol. 9, no. 11, pp. 36–42, 2017, doi: 10.5815/ijcnis.2017.11.04.
Y. Jung, “Multiple predicting K-fold cross-validation for model selection,” J. Nonparametr. Stat., vol. 30, no. 1, pp. 197–215, 2018, doi: 10.1080/10485252.2017.1404598.
B. G. Marcot and A. M. Hanea, “What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?,” Comput. Stat., vol. 36, no. 3, pp. 2009–2031, 2021, doi: 10.1007/s00180-020-00999-9.
S. H. Kim and H. J. Moon, “Case Study of An Advanced Integrated Comfort Control Algorithm with Cooling, Ventilation, and Humidification Systems Based on Occupancy Status,” Build. Environ., vol. 133, pp. 246–264, 2018, doi: 10.1016/j.buildenv.2017.12.010.
Refbacks
- There are currently no refbacks.