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 The properties of neutron star’s inner crust have been investigated using 

the Compressible Liquid Drop Model, particularly around the neutron 

drip density region, which is the boundary between the outer and inner 

crust. Symmetry energy in the equations of state SLy4 and BSk3 was 

calculated to determine the density data between the outer and inner 

crusts.  The properties of the inner crust can be understood through 

parameters such as the change in the number of nucleons in the atomic 

nucleus, the asymmetry parameter in surface energy, and volume energy. 

It was shown that the choice of the symmetry energy expansion 

coefficient (L) of order-1 results in a distinct energy range of 9-11 MeV 

within the neutron drip region. This contrasts significantly with the 

energy symmetry observed around saturation density, which reaches (30 

± 4) MeV in the reference models used. Furthermore, it was found that 

symmetry energy affects the neutron composition in the inner crust. As 

the density increases, neutron numbers rise, while proton counts exhibit 

relative stability within the range of 40 to 50 for each atomic nucleus. 

Importantly, we observe a marked decrease in proton fraction at the onset 

of the neutron drip region, where 𝐸𝑠𝑦𝑚 ≅10 MeV, suggesting electron 

capture processes transforming protons into neutrons. This phenomenon 

contributes to the presence of neutron and free neutron gas layers within 

the inner crust. 
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INTRODUCTION 

Stars are massive balls of luminous gas (𝑀 > 

0,08𝑀⊙) and are formed from molecular clouds 

(high-density interstellar gas and dust) that 

eventually clump together due to gravitational forces 

between the molecules (Istiqomah, 2010). Neutron 

stars are objects of matter that are highly compressed 

in such a way that the geometry of space-time 

changes from flat space-time (Weber, 2005). The 

relativistic contribution to the hydrostatic 

equilibrium equation of stellar structure is expressed 

by the TOV (Tolman-Oppenheimer-Volkoff) 

equation (Misner etc., 1973; Oppenheimer and 

Volkoff, 1939; Tolman, 1939)  : 

 

𝑑𝑃
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= −𝐺
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(1 −
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𝜌𝑐2
) (1 +

4𝜋𝑃𝑅3

𝑚𝑐2
) (1 −

2𝐺𝑚

𝑟𝑐2
)

−1

 (1) 

𝑑𝑚

𝑑𝑟
= 4𝜋𝑟2𝜌 (2) 

𝑑Φ 

𝑑𝑟
= −

1

𝜌𝑐2

𝑑𝑃

𝑑𝑟
(1 +

𝑃

𝜌𝑐2
)

−1

  (3) 

 

The equation above relates the pressure 𝑃(𝑟), 
density of the star 𝜌(𝑟), the mass of the star 𝑚(𝑟) and 

the components of the metric tensor Φ(𝑟)(Haensel, 

P., Potekhin, A.Y., and Yakovlev, D.G., 2007). 

Solving the TOV equation requires knowledge of the 

relationship between pressure 𝑃(𝑟), star density 𝜌(𝑟), 
which is commonly referred to as the equation of 

states (EoS). 𝑃 =  𝑃(𝜌). Knowledge of the EoS is 

required to calculate the properties of neutron stars, 

such as to determine the maximum mass of neutron 

stars (𝑀𝑚𝑎𝑥). Compact objects with masses greater 

than the maximum mass of a neutron star 

(𝑀>𝑀𝑚𝑎𝑥), can certainly be identified as black holes 

(Douchin and Haensel, 2001). 

The structure of a neutron star generally 

consists of an outer and inner core, an outer and 

inner crust, and an atmosphere, and there is a 

boundary layer between the outer core and the inner 

crust called the mantle or paste phase, and a 

boundary between the inner crust and the outer crust 

called the neutron drip region. It is called the 

neutron drip region because in this region neutrons 

begin to drip out of the core. It is not possible to 

know the structure and state of neutron stars 

directly. Observations made for neutron stars are 

only based on the emitted spectrum and the results 

obtained in the form of luminosity, spectrum energy 

(frequency and wavelength) can be used to 

determine the mass, radius, and surface temperature 

of neutron stars in general. However, the structure 

and state of matter in neutron stars cannot be known 

with certainty through observation.  

The use of the compressed liquid drop model 

to determine the inner crust properties of neutron 

stars is based on the fact that the neutron density 

increases continuously towards the core of the 

neutron star. The core material in the neutron star's 

inner crust is viewed as clusters. The core clusters in 

the inner crust are modeled as liquid drops whose 

energy, 𝐸(𝐴, 𝑍) can be decomposed into volume 

terms, surface terms and Coulomb terms as a 

function of density. 

The compressed liquid drop model is a mass 

model built from the Weizsacker-Bethe mass 

formula by adding coefficients from volume effects, 

surface, and symmetry terms as a function of 

density. In general, the advantage of the compressed 

liquid drop model is that it can explain a wide 

variety of macroscopic properties of nuclei. Over the 

past decade, the model has been used to explain 

neutron skins, deformation of rapidly rotating 

nuclei, synthesis of superheavy nuclei, nuclear 

fission reactions, and nuclei in the inner crust of 

stars. 

One of the main elements of EoS that has 

become of great interest in the field of astrophysics 

for dense neutron matter is the symmetry energy 

(Lee, etc., 1998). This EoS is the bridge that connects 

the knowledge between symmetry energy and 

structure in neutron stars, such as the surface effect, 

Coulomb effect, and volume effect  (Gandolfi, 

2013). Symmetry energy appears when the system 

deviates from the isospin symmetric limit of an equal 

number of neutrons and protons.  (Roca-Maza and 

Piekarewicz, 2008). The investigation of symmetry 

energies in neutron stars is increasingly vigorous. 

Starting from symmetry energy in general to 

symmetry energy on each structure contained in 

neutron stars has been studied in various methods, 

such as Thomas-Fermi calculations, Brueckner-

Hartree-Fock approach with all kinds of variations, 

relativistic and non- relativistic and other 

approaches. In this study, the effect of symmetry 

energy on the properties of the neutron star crust was 

studied, especially in the neutron drop density 

region, which is the boundary between the outer and 

inner crusts, described by the compressible liquid 

drop model. 

Neutron Star 

Neutron star with typical mass 𝑀 = (1 ∼ 

2)𝑀⊙, with 𝑀⊙ = 2 × 1033 g is the mass of the sun, 
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has a radius of 𝑅 ≈ (10 – 14) km. Density 𝜌 of the 

star is ∼ 1015 g cm-3, or approximately 3 times the 

density of a normal nucleus 𝜌0 = 2,8 × 1014 gcm-3 

(Potekhin, 2010). Neutron stars have minimum and 

maximum mass limits. The maximum mass lies in 

the range (1,44 ~ 3)𝑀⊙(Lattimer and Prakash, 

2004).  

Basically, the regions of neutron stars are 

divided into the core and the envelope. The envelope 

of a neutron star consists of the atmosphere, ocean 

layer, outer crust, inner crust, and mantle. The core 

of a neutron star consists of the inner core and outer 

core (Haensel etc., 2007). 

a. Atmosphere: Neutron star atmospheres vary in 

depth from deep ~10 cm for hot neutron stars 

and can disappear for cool neutron stars. 

b. Ocean Layer: The depth of the ocean layer of 

neutron stars ~10 − 100 m, with mass density 

𝜌~106 − 109 g cm−3. 

c. Outer crust: The depth of the outer crust is ~10 − 

100 m, with mass density 106 g cm−3 ≲ 

d. 𝜌 ≲ 4,3 × 1011g cm−3, and consists of a plasma of 

ions and electrons. 

e. Deep crust: Deep crust has a depth ~1 − 2 km 

and its density 𝜌 ≈ (4 − 6) × 1011 g cm−3. The 

material contained in the deep crust is electrons, 

free neutrons (neutron gas), atomic nuclei rich in 

neutrons. 

f. The outer core: The outer core of a neutron star 

has a depth of several kilometers and a density of 

0,5 𝜌0 ≲ 𝜌 ≲ 2𝜌0. The material of the outer core 

is composition 𝑛𝑝𝑒𝜇.  

g. Inner core: The inner core of a star is dense 𝜌 ≳ 

2𝜌0 and is several kilometers deep. The density of 

the inner core can even reach 𝜌 ∼ 10 − 15 𝜌0  

 

The crust is a component that plays an 

important role in the evolution of neutron stars 

(Paweł Haensel, 2001).  At Figure 1, we can see the 

changes in the atomic nuclei of the neutron star 

structure in general. The nuclei change with each 

increase in density, from freely scattered nuclei to 

organized nuclei. Then the nuclei that have an 

excess of neutrons, leading to the fusion of each 

nucleus into a homogeneous core.

 

 
Figure 1. Schematic structure of the neutron star crust (Chamel and Haensel, 2008) 

The region where the core begins to drip 

neutrons due to an excess of neutrons in the core is 

the boundary region between the outer crust and the 

inner crust. The area is referred to as the neutron 

drip region, which can be seen in  Figure 2. As the 

density increases, the ground state value 𝑍/𝐴 

decreases and neutrons become increasingly 

unbound.

 

 
Figure 2. The transition region between the outer crust and the inner crust in neutron stars with neutrons 

(black dots) and protons (blue dots) in the core 
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If we define pure neutron chemical potential 

in a nucleus

𝜇 ′
𝑛 ≡ 𝜇𝑛 − 𝑚𝑛𝑐2 = (

𝜕𝐸{𝐴,𝑍}

𝜕𝑁
)

𝑍
− 𝑚𝑛𝑐2, (4) 

As long as  𝜇′
𝑛< 0, all neutrons are bound inside the 

nucleus. The neutron drip region corresponds to 𝜇′
𝑛 

= 0. Beyond this point, neutrons drip out of the 

nucleus, i.e. neutrons begin to populate states with 

the continuous energy spectrum. The neutron drip 

point can be roughly estimated using mass formula 

approximation 𝐸′{𝐴, 𝑍} = 𝐸{𝐴, 𝑍} – 𝐴𝑚𝑐2, where 

the neutron-proton mass difference is ignored,  𝑚𝑛 ≈
𝑚𝑝 ≈ 𝑚 = 939 MeV c-2. By neglecting the surface 

term and the Coulomb term, we get 

𝐸′{𝐴, 𝑍} ≈ 𝐴 (𝐸𝑣𝑜𝑙 + 𝐸𝑠𝑦𝑚𝛿2) , (5) 

with 𝛿 ≡
𝑁−𝑍

𝐴
, and 𝐸𝑣𝑜𝑙  and 𝐸𝑠𝑦𝑚 are experimental 

volume energy and symmetry energy of the nucleus, 

𝐸𝑣𝑜𝑙≃ −16 MeV and 𝐸𝑠𝑦𝑚≃ 32 MeV respectively.  

Using equation (5), it can be easily shown that the 

value of 𝛿 with 𝜇′𝑛 =  0 is 

𝛿𝑁𝐷 = √1 − 𝐸𝑣𝑜𝑙 𝐸𝑠𝑦𝑚⁄ − 1 ≃ 0.225  (6) 

By neglected neutron-proton mass difference, the 

equilibrium condition of the 𝛽− 

𝑝 + 𝑒 → 𝑛 + 𝑣𝑒  (7) 

with  

𝜇𝑒 = 𝜇𝑛 − 𝜇𝑝 ≈ 4𝐸𝑠𝑦𝑚𝛿 (8) 

Then the proton fraction can be written as follows 

(Haensel etc., 2007) 

𝑥𝑝 = 𝑍/𝐴

≈ 4,75 × 10−2 (
𝜌0

𝜌
) (

𝐸𝑠𝑦𝑚(𝜌)

𝐸𝑠𝑦𝑚(𝜌0)
)

3

. 
(9) 

Compressed Liquid Drop Model 

The atomic nucleus is composed of nucleons 

so that interactions between nucleons can affect the 

density of the nucleus. The interactions between 

nucleons at the surface of the nucleus are different 

from those at the center of the nucleus. Therefore, a 

review of surface effects is essential for the nucleon 

density. As the nucleon density increases, the 

pressure increases. This affects the density 

equilibrium of the compressed nucleon liquid. To 

see this effect, CLDM is used, which includes a 

Semi-Empirical Mass Formula that depends on the 

density of the nucleus given as the density of barions 

and excess neutrons in the interior of the nucleus. 

The matter density following the neutron droplets 

𝜌𝑁𝐷 is not only relevant for the crusts of neutron 

stars, but also for white dwarfs (Chamel dan 

Haensel, 2008). The total energy density in the outer 

crustal layer is given as follows (Baym, Pethick etc., 

1971). 

𝜀𝑡𝑜𝑡 = 𝑛𝑁𝐸(𝐴, 𝑍) + 𝜀𝑒 + 𝜀𝐿 , (10) 

with 𝑛𝑁 is the number density of nuclei, 𝐸(𝐴, 𝑍) is 

the energy of nuclei with 𝑍 is number of protons and 

𝐴 the number of nucleons in the atomic nucleus, 𝜀𝑒 

is the kinetic energy density of electrons that arise 

due to interactions between electrons and between 

electrons and positive ion core clusters, 𝜀𝐿 is the 

lattice energy density that arises due to interactions 

between clusters. 

Upon entering the deep crust, appear  

additional interactions due to excess 

neutrons/neutrons that are not bound to the 

nucleus, results in a decrease in surface tension 

along with an increase in density, and compression 

of matter inside the nucleus (Paweł Haensel, 2001), 

so that the total energy density in equation (10) gets 

a contribution from the free neutron gas 𝜀𝑛  (Chamel 

and Haensel, 2008) 

𝜀𝑡𝑜𝑡 = 𝑛𝑁𝐸(𝐴, 𝑍) + 𝜀𝑒 + 𝜀𝐿 + 𝜀𝑛 . (11) 

The binding energy of each nucleus is given as 

follows (Douchin and Haensel, 2001).   

𝐸(𝐴, 𝑍) = 𝐸𝑣𝑜𝑙 + 𝐸𝑠𝑢𝑟𝑓 + 𝐸𝐶𝑜𝑢𝑙  . (12) 

Element 𝐸𝑣𝑜𝑙 is the volume energy with the bulk 

contribution of the nucleon, which is independent of 

the size and shape of the nucleus structure (Haensel, 

2001; Iida and Oyamatsu, 2004). 

𝐸𝑣𝑜𝑙 = 𝐴𝑤(𝜌, 𝛿) , (13) 

with the bulk contribution of each nucleon being 
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𝑤(𝜌, 𝛿) = 𝑎𝑣𝑜𝑙 +
𝐾

18
(

𝜌 − 𝜌0

𝜌0

)

2

+ [𝐽 +
𝐿

3
(

𝜌 − 𝜌0

𝜌0

)] 𝛿2 , (14) 

here 𝐾 is the incompressibility, while 𝐽 is the volume 

symmetry coefficient and 𝐿 is the density symmetry 

coefficient. The surface energy can be written 

(Oyamatsu etc., 2010) 

𝐸𝑠𝑢𝑟𝑓 = 4𝜋𝜎(𝜌, 𝛿)𝑟𝑝
2, (15) 

with surface potential 𝜎 as a function of density 𝜌 

and asymmetry parameter 𝛿: 

𝜎(𝜌, 𝛿) = 𝜎0 [1 − 𝐶𝑠𝑦𝑚𝛿2 + 𝜒 (
𝜌 − 𝜌0

𝜌0

)] , (16) 

with  𝐶𝑠𝑦𝑚 is the symmetry coefficient of surface 

energy. Surface potential per unit area 𝜎 and the 

chemical potential 𝜇𝑛,𝑠 of neutrons absorbed on the 

droplet surface, forming a neutron shell, can be 

determined by 

𝜎 =
𝜕𝐸𝑠𝑢𝑟𝑓

𝜕𝒜
|

𝑁𝑠

,  𝜇𝑛,𝑠 =
𝜕𝐸𝑠𝑢𝑟𝑓

𝜕𝑁𝑠

|
𝒜

, 

 

(17) 

where 𝒜 (4𝜋𝑟𝑝
2 for spherical nuclei) is the cell 

surface area, while 𝑁𝑠 is the number of neutrons in 

the neutron shell. By using Euler's theorem 

approach on homogeneous functions, the surface 

energy can be written as (Chamel and Haensel, 

2008) 

𝐸𝑠𝑢𝑟𝑓 = 𝜎𝒜 + 𝑁𝑠𝜇𝑛,𝑠 . (18) 

With a simple approach, the curvature correction in 

𝐸𝑠𝑢𝑟𝑓  is proportional to 𝒜 𝑟𝑝⁄  so it can be neglected, 

while 𝜎 can be approximated by the surface tension 

𝜎𝑠𝑢𝑟𝑓, and 𝑁𝑠 = 𝑣𝑠𝑢𝑟𝑓𝒜 ≃ (𝜌𝑛,𝑖 − 𝜌𝑛,𝑜)𝑠𝑛𝒜, with 

𝑣𝑠𝑢𝑟𝑓  is the surface density of absorbed neutrons 

(Haensel etc., 2007). 

The Coulomb energy derived for the radius of a 

uniformly charged sphere 𝑟𝑝 is given by (Chamel dan 

Haensel, 2008) 

𝐸𝐶𝑜𝑢𝑙 =
3

5

𝑍2𝑒2

𝑟𝑝

 . (19) 

The relationship between surface energy and 

Coulomb energy can simply be written 

𝐸𝑠𝑢𝑟𝑓 = 2𝐸𝐶𝑜𝑢𝑙  (20) 

as a result of the virial theorem on simplified CLDM 

without curvature correction (Baym etc., 1971). 

Symmetry Energy 

Symmetry energy is the energy difference 

between pure neutron matter and symmetry core 

matter. The stability of the matter in neutron stars is 

sensitive to the existence of symmetry energy and its 

first derivatives. Neutrons cannot survive the 

saturation density, so they will turn into protons 

through decay of 𝛽−. The cooling of neutron stars is 

strongly related to the fraction of protons and 

neutrons as a function of density.(Gandolfi, 2013). 

Symmetry energy appears in the equation of state of 

nuclear matter subject to Taylor expansion as a 

function of density and isospin asymmetry terms. 

The isospin asymmetry term (𝛿) describes the state 

of matter when the proton fraction is not equal to the 

neutron fraction. Energy per particle 𝐸(𝜌, 𝛿) in basic 

asymmetric nuclear matter can be expanded around 

𝛿 = 0 corresponding to symmetry matter so that it 

becomes as follows (Moustakidis, 2012).

𝐸(𝜌, 𝛿) = 𝐸(𝜌, 𝛿 = 0) + 𝐸𝑠𝑦𝑚,2(𝜌)𝛿2 + 𝐸𝑠𝑦𝑚,4(𝜌)𝛿4 + ⋯ + 𝐸𝑠𝑦𝑚,2𝑘(𝜌)𝛿2𝑘 + ⋯, (21) 

with 𝜌 = 𝜌𝑝 + 𝜌𝑛  is the total density, and 𝛿 = 1 – 2𝑥𝑝 

where 𝑥𝑝 is the proton fraction (Gandolfi, 2013; 

Sammarruca, 2014). 

Nuclear matter with equal numbers of 

neutrons and protons (𝑥𝑝 = 0.5) is referred to as 

symmetric nuclear matter (SNM), and nuclear 

matter with 𝑥𝑝 = 0.0 is naturally referred to as pure 

neutron matter (PNM) (Newton etc., 2012). 

Parameters 𝐸(𝜌, 𝛿 = 0) is the energy per baryon of 

core symmetry matter, while the expansion 

coefficient is (Moustakidis, 2012). 

𝐸𝑠𝑦𝑚,2(𝜌) =
1

2!

𝜕2𝐸(𝜌,𝛿)

𝜕𝛿2
|

𝐼=0
,  

𝐸𝑠𝑦𝑚,4(𝜌) =
1

4!

𝜕4𝐸(𝜌, 𝛿)

𝜕𝛿4
|

𝐼=0

, 

𝐸𝑠𝑦𝑚,2𝑘(𝜌) =
1

(2𝑘)!

𝜕2𝑘𝐸(𝜌, 𝛿)

𝜕𝛿2𝑘
|

𝐼=0

. 

(22) 
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Based on equation (21), only 𝛿 even powers have a 

great influence because the strong interaction must 

be symmetrical between the number of neutrons and 

protons. The parameter 𝐸𝑠𝑦𝑚,2𝑘(𝜌) is the multiplying 

coefficient of the isospin asymmetry term with an 

approximation of order more than 2 can be ignored 

because the value is too small, so in the case of an 

expansion independent of the asymmetry parameter 

𝛿, the symmetry energy can be defined as 

𝐸𝑠𝑦𝑚(𝜌) = 𝐸(𝜌, 𝛿 = 1) − 𝐸(𝜌, 𝛿 = 0) , (23) 

and the energy per particle can be written 

𝐸(𝜌, 𝛿) = 𝐸(𝜌, 𝛿 = 0) + (𝐸(𝜌, 𝛿 = 1) − 𝐸(𝜌, 𝛿 = 0)) 𝛿2 . (24) 

The energy at saturation density is 𝐸(𝜌0) = -16 MeV 

and its symmetry energy can be expanded as 

(Gandolfi, 2013; Baldo dan Burgio, 2016) 

𝐸𝑠𝑦𝑚(𝜌) = 𝐽 +
𝐿

3
(
𝜌 − 𝜌0

𝜌0

) +
𝐾𝑠𝑦𝑚

18
(

𝜌 − 𝜌0

𝜌0

)

2

+
𝑄𝑠𝑦𝑚

162
(

𝜌 − 𝜌0

𝜌0

)

3

+ ⋯ , (25) 

with symmetry energy parameters, namely 𝐽, 𝐿, 𝐾𝑠𝑦𝑚 

and 𝑄𝑠𝑦𝑚. Parameter 𝐽 is the symmetry energy at 

saturation density 

𝐽 = 𝐸𝑠𝑦𝑚(𝜌0) , (26) 

parameter 𝐿 is the coefficient of the first-order 

expansion parameter in the expansion 𝐸𝑠𝑦𝑚(𝜌) 

around the saturated density which represents the 

slope of the symmetry energy graph with respect to 

density 

𝐿 = 3𝜌0 (
𝑑𝐸𝑠𝑦𝑚

𝑑𝜌
)

𝜌
0

 , (27) 

while 𝐾𝑠𝑦𝑚 is the second-order expansion parameter 

that describes the curvature of the graph 

𝐾𝑠𝑦𝑚 = (3𝜌0)
2

(
𝑑2𝐸𝑠𝑦𝑚

𝑑𝜌2
)

𝜌
0

 . (28) 

The form of the symmetry energy equation in 

equation (25) continues to higher powers (𝑄𝑠𝑦𝑚 and 

so on) 

𝑄𝑠𝑦𝑚 = (3𝜌0)
3

(
𝑑3𝐸𝑠𝑦𝑚

𝑑𝜌3
)

𝜌
0

 . (29) 

However, all parameters with rank > 2 are ignored, 

leaving the parameters 𝐽, 𝐿, dan 𝐾𝑠𝑦𝑚(Newton etc., 

2012; Baldo and Burgio, 2016). 

RESULTS AND DISCUSSION 

Calculation of symmetry energy against 

density based on equation (25) using several EoS 

models as examples, namely SLy4 as the main 

model and BSk3 as well as Z model, MSk9 model, 

and SkI5 according to (Danielewicz dan Lee, 2009) 

) as comparison models. The results of the symmetry 

energy calculation are shown in Figure 3. 

The calculation results shown in Figure 3 are 

in line with the results of the calculation of 

symmetry energy as a function of density in  (Paweł 
Danielewicz dan Lee, 2009). It can be seen in Figure 

3 that the increase in symmetry energy is consistent 

with the increase in density for all four models used. 

However, as the density approaches saturation 

density, there are some models that depict 

decreasing symmetry energy. This occurs as a result 

of the density symmetry coefficient which describes 

the slope of the symmetry energy graph. 𝐿 which 

describes the slope of the symmetry energy graph. 
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Figure 3. Symmetry energy as a function of density with several EoS models. 

The symmetry energies in the neutron drop 

region only in the range of 9 MeV to 11 MeV for the 

SLy4, BSk3, and Z models are certainly very 

different from the symmetry energies around the 

saturation density which reach (30 ± 4) MeV (Zhang 

dan Chen, 2013), while the value of the density 

symmetry coefficient 𝐿 around neutron drops (𝜌 ≃ 

4×10-3 fm-3 )) for the three models used are still quite 

relevant, as seen from Figure 3 where the value of 

symmetry energy increases in line with the increase 

of density. However, in the saturation region, 𝐿 in 

the Z model is no longer relevant because the value 

of 𝐿 in model Z is not in the specified range, namely 

(20 ~ 115) MeV (Zhang dan Chen, 2013). 

Symmetry energy affects the composition of 

the deep crust visualized in Figure 4. In the neutron 

drop region with 𝐸𝑠𝑦𝑚 range of (9 ~ 11) MeV, one 

can see the appearance of 𝑁𝑠. This is certainly 

related to the neutrons that begin to drip from the 

atomic nucleus. 

 
Figure 4. Change in deep crustal composition versus symmetry energy as a function of density 

As the density increases, it can be seen that 𝑍 

tends to stabilize between 40 and 50, but the number 

of 𝐴 and 𝑁𝑠 increases as it splits into two segments. 

At the time of 𝐸𝑠𝑦𝑚 =(11 ~ 19) MeV, the increase in 

the number of 𝐴 and 𝑁𝑠 is stable and tends to be 

gradual. Whereas at 𝐸𝑠𝑦𝑚 >19 MeV, the increase in 

the number of 𝐴 and 𝑁𝑠 is very high. However, the 

increase in the number of neutrons that form the 

neutron shell 𝑁𝑠 is decreasing. This occurs because 

as one goes deeper into the pasta-nucleus phase 

interface of the star, the atomic nuclei become more 

homogeneous. 

Figure 4 shows that the symmetry energy has 

a relationship with the proton fraction, which can 
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also be seen in Eq.  (9). The dependence of 

symmetry energy on proton fraction as one of the 

compositions in the deep crust can also be observed 

in Figure 5. The proton fraction, besides depending 

on the number of 𝑍 and 𝐴, also has a relationship 

with 𝐸𝑠𝑦𝑚 with 𝜌, as seen in equation (9). A drastic 

decrease in proton fraction at the beginning of the 

neutron drop region with 𝐸𝑠𝑦𝑚 ≅10 MeV, occurs 

when 𝑁 at stable numbers at 40, 50 and 82 to reduce 

the electronic contribution. The results shown in 

Figure 5  are a small subset of those obtained by 

(Pearson etc., 2014). 

The decrease of 𝑥𝑝 = 𝑍/𝐴 occurs because 

degenerate electrons dominate and make protons 

capture electrons so that equilibrium −𝛽 occurs as in 

equation (7). The proton fraction slopes and gets 

smaller towards 5% at the saturation density. 

However, at 𝜌 ≥ 𝜌0, the process is reversed because 

the neutrons are unable to maintain the condition, 

so they decay and make the proton fraction 𝑥𝑝 starts 

to increase. Thus, proton neutronization gives way 

to neutron protonization through 𝛽 decay. 

However, the increase in the number of 𝑍 will not 

exceed the amount 𝑁 in the nucleus of the neutron 

star. 

 

 
Figure 5. Dependence of proton fraction 𝑍/𝐴 to the symmetry energyi 𝐸𝑠𝑦𝑚. 

The correlation of symmetry energy to 

surface energy is connected through the local 

asymmetry parameter 𝛿𝐿 which describes the 

number of adsorbed neutrons forming a neutron 

shell (Steiner etc., 2005). 

𝑁𝑠 = 4𝜋𝑟𝑝
2

𝐶𝑠𝑦𝑚𝛿𝐿

𝐸𝑠𝑦𝑚(1 − 𝛿𝐿)
 , (30) 

with 

𝛿𝐿 =
𝐴 − 𝑁𝑠 − 2𝑍

𝐴 − 𝑁𝑠

 . (31) 

From equation (31), then it can be written as 

𝑁𝑠 =
𝐴(𝛿 − 𝛿𝐿)

(1 − 𝛿𝐿)
 , (32) 

with 

𝛿𝐿 = 𝛿 [1 +
4𝜋𝑟𝑝

2𝐶𝑠𝑦𝑚

𝐸𝑠𝑦𝑚𝐴
]

−1

. (33) 

The local asymmetry parameter starts to 

appear when there are atoms with excess neutron 

and starting to form a neutron shell which starts to 

occur before the neutron drop region (𝜌 ≤ 4×10-3 fm-

3 ). The difference between 𝛿 with 𝛿𝐿 can be seen in 

Figure 6. 
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Figure 6. Local asymmetry parameters𝛿𝐿and asymmetry parameters 𝜹 in the paste phase region up to 

twice the saturation density in neutron star cores as a function of density 

Equation (33) tell us that the difference in 

value between 𝛿𝐿 with the value of 𝛿 rise with the 

increase in the number of 𝐴 and with the increase of 

neutron accumulation at the surface of the atomic 

nucleus represented by 4𝜋𝑟𝑝
2𝐶𝑠𝑦𝑚 . 

At the time of 𝜌 ≈ 0,08 fm-3a discontinuity 

occurs, which is caused by the changing shape of the 

atomic nucleus. This indicates that the region is 

beginning to enter the neutron star pasta phase. At 

𝜌 ≈ 0,16fm-3, value of 𝛿𝐿 is equal to the value of 𝛿 

which indicates that its density is the saturation 

point of the neutron stars. In the region 𝜌0 up to 2𝜌0, 

the value of 𝛿𝐿 exceeds the value of 𝛿 due to the start 

of the fusion of each atomic nucleus towards 

homogeneous in the core region of the neutron star. 

The decrease in the value of 𝛿 value, which is quite 

gentle, occurs due to the protonization of neutrons 

which makes the number of 𝑍 slightly increases, 

while the value of 𝛿𝐿 continues to increase because 

the number of 𝐴 and 𝐸𝑠𝑦𝑚 keep increasing. 

Equation (33)  is also the link between the 

symmetry energy and the local asymmetry 

parameter with the value of 𝐶𝑠𝑦𝑚 = 2 (Iida and 

Oyamatsu, 2004) and can be shown through Figure 

7. 

 
Figure 7. Relationship between local asymmetry parameter 𝜹𝑳 with symmetry energy 𝑬𝒔𝒚𝒎 

Figure 7 is a graph of the correlation between 

the magnitude of the local asymmetry parameter 

and the symmetry energy, which is directly related 

to the increasing  𝛿𝐿. The local asymmetry 

parameter is seen when 𝐸𝑠𝑦𝑚 at (9 ~ 11) MeV which 

means that the emergence of 𝛿𝐿 begins to occur in 

the region of neutron drops. Discontinuities are seen 

at 𝐸𝑠𝑦𝑚 ≈ 22 MeV, which means it indicates the 
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magnitude of the symmetry energy at the beginning 

of the paste phase. The increase 𝐸𝑠𝑦𝑚 which is stable 

enough to make 𝛿𝐿 increase up to 𝜌 ~ 2𝜌0. 

Symmetry energy is very closely related to 

volume energy, this can be seen in the equation (13) 

and Figure 8. 

 
Figure 8.  Energy change versus density 

The relationship between the symmetry 

energy represented by the parameters 𝐽 and 𝐿and 

volume energy can be seen in Figure 8. The 

parameter 𝐽 itself is the volume symmetry energy as 

an approximation of the volume contribution to the 

liquid drop model (Paweł Danielewicz and Lee, 

2009). In the neutron drop region, the symmetry 

energy makes the volume energy positive with a 

fairly gentle energy increase in the range of (20 ~ 

145) MeV. However, the increase in symmetry 

energy as a function of density around  (21 ~ 24) 

MeV near the paste phase, can make the volume 

energy increase very rapidly, this can occur because 

the atoms begin to be unable to maintain their shape 

so that the binding energy comparable to the volume 

energy is very dominating. 

From the above research results, it can be said 

that symmetry energy has a major role in identifying 

each region in neutron stars through its relationship 

with density, proton fraction or asymmetry 

parameters. The increasing symmetry energy leads 

to a greater abundance of neutrons in each atomic 

nucleus and can give rise to absorbed neutrons, 

which can be indicated by the presence of the local 

asymmetry parameter. The rise in symmetry energy 

also causes a decrease in the proton fraction value 

from the beginning of the neutron drip region, and 

can significantly enhance the volume energy as it 

enters the neutron star pasta phase.  

CONCLUSIONS 

From the above discussion, it can be 

concluded that the effect of symmetry energy on the 

inner crust of neutron stars is seen in the increase in 

symmetry energy along with an increase in the 

density of neutron stars causing equilibrium 𝛽− to 

occur and produces neutron excess which is 

represented by 𝛿𝐿, so that the number of 𝑁 at the 

interface regions of the outer crust and the inner 

crust was increased by a number of 𝑍 valuing 

between 40 to 50. The increase in the number of 

neutrons makes the proton fraction decrease 

significantly, which can be seen from the beginning 

of entering the inner crust (neutron drop region). 

The increase in symmetry energy also leads to an 

increase in binding energy represented by volume 

energy as the main energy contribution with 

parameters 𝐽 and 𝐿 as parts of the volume energy. 

Within this equation,  𝐽 is the volume symmetry 

energy that serves as an approximation of the 

volume contribution to the liquid drop model. 
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