PENGARUH SUDUT SERANG TERHADAP KINERJA TURBIN ANGIN HELIKS GORLOV DENGAN PENAMBAHAN CURVEPLATE

Muhammad Fadhil(1),


(1) Universitas Negeri Semarang

Abstract

Abstract.  At present, source of energy is used from fossil fuels. To overcome the fossil fuels that cause pollution effects to the environment, needs a development on renewable energy. The development can be channeled through a wind turbine. To improve the performance of Gorlov’s helical turbine there are several factors that influence, one of them is the angle of attack. The innovation can be do is change the angle of attack to 90° and adding curveplate, this innovation can provide greater power yield and power coefficient compared to the Gorlov’s helical turbine that already currently used. This is because change the angle of attack conduce lift and drag force on blade are change.  With the right angle of attack can provide more positive forces that help the turbine rotating. The more force that help the turbine rotating made the more power generated.

Keywords

Gorlov’s helical turbine, angle of attack, curveplate

Full Text:

PDF

References

Culp, Archie W., 1991. Prinsip Prinsip Konversi Energi. Jakarta: Erlangga. Terjemahan: Principles of Energy Conversion. 1979. McGraw-Hill, Ltd

Kompas. 2007. “Pengembangan Energi Angin Memungkinkanâ€, http://www.energi.lipi.go.id/utama.cgi?cetakartikel&1177294977, diakses pada tanggal 10 april 2017 pukul 10.27

Martinus. et al. 2011. Analisis Fenomena Penampang Alir Vertical Axis Wind Turbine (VAWT) Tipe Heliks Terhadap Kecepatan Angin Sebagai Pembangkit Listrik Alternatif Berskala Rumah Tangga. Lampung: Universitas Lampung.

Niblick, Adam L. 2012. Experimental and Analytical Study of Helical Cross-Flow Turbines for a Tidal Micropower Generation System. Thesis. University of Washington. Washington.

Bagar, K. H. et al. 2013. Pembangkit Listrik Tenaga Angin dengan Inovasi Turbin Heliks Vertikal untuk Kemandirian Energi Sekolah Daerah Pesisir. Surabaya: ITS.

Sudargana. R. Guruh Kis Yuniarso. Analisa Perancangan Turbin Darrieus Pada Hydrofoil Naca 0015 Dari Karakteristik CL dan CD Pada Variasi Sudut Serang Menggunakan Regresi Linear Pada MATLAB. Semarang: Rotasi

Habibie, M Najib. 2011. Kajian Potensi Energi Angin di Wilayah Sulawesi dan Maluku. Jakarta: Puslitbang BMKG

Pangaribuan, Lenni Pabrina. 2015. Pengaruh Jumlah Sudu Turbin Angin Sumbu Tegak (TAST) Terhadap Daya Dan Effisiensi Turbin. Bogor. Institut Pertanian Bogor.

Hau, Erick. 2000. Wind Turbines. Translated by Renouard, Horst von. 2013. London: Springer-Verlag.

Bayu, Aditya Indra. 2012. Desain Vertical Axis Wind Turbine Tipe Savonius Optimalisasi Kecepatan Angin Rendah. Jakarta: Universitas Indonesia

Susanto, Andi. et al. 2015. Studi Eksperimen Pengaruh Sudut Serang Terhadap Performa Turbin Angin Sumbu Horizontal. Surakarta. Universitas Muhammadiyah Surakarta.

Farid, Ahmad. 2014. Optimasi Daya Turbin Angin Savonius Dengan Variasi Celah dan Perubahan Jumlah Sudu. Tegal: Universitas Pancasakti Tegal.

Bianchini, Alessandro. et al. 2015. Pitch Optimization in Small-size Daerrieus Wind Turbines. Italy: Energy procedia.

Aryanto, Firman. et al. 2013. Pengaruh Kecepatan Angin dan Variasi Jumlah Sudu Terhadap Unjuk Kerja Turbin Angin Poros Vertikal. Mataram: Dinamika Teknik Mesin

Paillard, B. et al. 2015. URANSE Simulation of An Active Variabel-Pitch Cross-Flow Darrieus Tidal Turbine: Sinusoidal Pitch Function Investigation. Irenav: Institut de Recherce de I’Ecole Navale.

Reuk. 2017. Wind Turbine Tips Speed Ratio. http://www.reuk.co.uk/wordpress/wind/wind-turbine-tip-speed-ratio/, diakses pada tanggal 7 maret 2018 pukul 21.37.

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License