
Scientific Journal of Informatics
Vol. 9, No. 1, May 2022

p-ISSN 2407-7658 http://journal.unnes.ac.id/nju/index.php/sji e-ISSN 2460-0040

Scientific Journal of Informatics, Vol.9, No.1 May 2022 | 1

Performance Comparison of Similarity Measure Algorithm as Data

Preprocessing Stage: Text Normalization in Bahasa Indonesia

Achmad Yohni Wahyu Finansyah1, Afiahayati2*, Vincent Michael Sutanto3
1,2Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada,

Yogyakarta, Indonesia
3Institute for Research Initiatives / Division of Information Science, Nara Institute of Science and Technology, Nara, Japan

Abstract.

Purpose: More and more data are stored in text form due to technological developments, making text data processing

more difficult. It also causes problems in the text preprocessing algorithm, one of which is when two texts are identical,

but are considered distinct by the algorithm. Therefore, it is necessary to normalize the text to get the standard form of

words in a particular language. Spelling correction is often used to normalize text, but for Bahasa Indonesia, there has
not been much research on the spell correction algorithm. Thus, there needs to be a comparison of the most appropriate

spelling correction algorithms for the normalization process to be effective.

Methods: In this study, we compared three algorithms, namely Levenshtein Distance, Jaro-Winkler Distance, and

Smith-Waterman. These algorithms were evaluated using questionnaire data and tweet data, which both are in Bahasa
Indonesia.

Result: The fastest normalization time is obtained by the Jaro-Winkler, taking an average of 31.01 seconds for

questionnaire data and 59.27 seconds for tweet data. The best accuracy is obtained by the Levenshtein Distance with a

value of 44.90% for the questionnaire data and 60.04% for the tweet data.
Novelty: The novelty of this research is to compare the similarity measure algorithm in Bahasa Indonesia. Therefore,

the most suitable similarity measure algorithm for Bahasa Indonesia will be obtained.

Keywords: Preprocessing, Text Normalization, Spell-correction, Levenshtein Distance, Jaro-Winkler Distance,
Smith-Waterman

Received May 2021 / Revised June 2021/ Accepted February 2022

This work is licensed under a Creative Commons Attribution 4.0 International License.

INTRODUCTION
The growth of the industry in the technology sector has made stored data bigger and made it difficult to

process data. This makes research in the field of text mining continue to develop [1]. In line with this, new

problems in text mining have also been revealed, such as large amounts of data, high dimensionality,

various data structures, and noise in data [2]. This problem, specifically unstructured data, makes the data

inconsistent and causes the results of natural language processing to be inaccurate [3]. One of the causes of

unstructured data is Non-Standard Words (NSWs), which is a condition when words cannot be found in a

dictionary. Therefore, one cannot find a specific word in the word list and also cannot derive the

morphological meaning of the words from the dictionary [4]. The solution to this problem is text

normalization. Text normalization is used at the data preprocessing stage, helping to remove or replace

informal writing or NSWs into its standard form in language [4]. Text normalization can be done in various

ways, including removing punctuation marks, changing capitalization, spell correction, and adding,

deleting, or rearranging words [5].

The implementation of spelling correction usually uses the word that has the closest distance or highest

similarity measure to a word in the dictionary. The algorithms for similarity measurement are divided into

several categories, such as edit based (Levenshtein Distance, Jaro-Winkler Distance, Hamming Distance),

token-based (n-gram), domain-dependent, and hybrid (TF-IDF) [3]. Comparison of these algorithms has

* Corresponding author.

Email addresses: achmad.y@mail.ugm.ac.id (Achmad), afia@ugm.ac.id (Afiahayati), Vincent

(v.michael@mail.ugm.ac.id)

DOI: 10.15294/sji.v9i1.30052

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.15294/sji.v9i1.30052

2 | Scientific Journal of Informatics, Vol.9, No.1 May 2022

been done before. Nugraha [6] conducted a comparison between the Longest Common Subsequence

algorithm with Levenshtein Distance and Jaro-Winkler Distance.

The results showed that normalization using the Levenshtein Distance and Jaro-Winkler method had better

accuracy than LCS. [3] conducted a comparison of Jaro-Winkler Distance and Smith-Waterman in

detecting duplicate data in the English dataset. The experiment shows that Smith-Waterman matches strings

with more accurate results than Jaro-Winkler Distance. Research on normalization has also been carried

out for English, Arabic, French, and Burmese language [7], [8], [9].

These previous works show that text normalization usually uses Levenshtein Distance or Jaro-Winkler

Distance for spelling correction. Besides, other work shows that Smith-Waterman provides higher accuracy

than Jaro-Winkler Distance in detecting duplicate data in British medical datasets [3]. However, there has

never been any research comparing the performance of these algorithms on text normalization for the

Bahasa Indonesia dataset. Therefore, a comparison of the normalization algorithm for the Bahasa

Indonesia dataset is needed.

Based on the background, this research aims to compare Levenshtein Distance, Jaro-Winkler Distance, and

Smith-Waterman as a similarity measure algorithm for text normalization, specifically in Bahasa Indonesia.

The parameters which will be compared are accuracy and time needed for normalizing. By choosing an

algorithm suitable for the Bahasa Indonesia language structure, it is expected to reduce the time of

execution and increase the accuracy when used in natural language processing. This study is an extended

version of the authors’ thesis [10].

METHODS

In this section, all steps used in this study are explained. First, is the dataset used. The dataset used consists

of two different types of data, which are formal-writing-style and informal-writing-style dataset. The

dataset was preprocessed using several techniques in the following order: data cleansing, case folding, and

normalization. Afterwards, the preprocessed data were spell-corrected using three distinct methods: the

Levenshtein Distance, the Jaro-Winkler Distance, and the Smith-Waterman method. During the spell-

correction process, the time and performance of each method were noted. The performance of each method

was then compared, followed by a discussion on which is the best method to be used in the scope of formal

and informal Bahasa Indonesia. The research stages are visualized in Figure 1.

Figure 1. Research stages

Dataset

The research will use 2 kinds of datasets in Bahasa Indonesia. The first dataset was taken from the

questionnaire of student’s comments on the teacher. Thus, the language is more formal. The second dataset

was acquired through web-scraping Indonesian tweets. This data has more free writing style and more NSW

compared to the first dataset. Each dataset consists of 1500 data rows written in Bahasa Indonesia. A subset

of the questionnaire and tweet dataset are presented in Table 1 and Table 2, respectively.

Tabel 1. Subset of the questionnaire dataset

No Questionnaire Answers

1 Guru idaman sepanjang masa

2 Tetaapp baik, ramah, dan sabarr ya bu

3 Ibu terbaikkk!!

4 Semoga pembelajaran menjadi semakin baik dsan efektif.

5 Lebih dijelaskan lagi bagian yang sulit

Scientific Journal of Informatics, Vol.9, No.1 May 2022 | 3

Tabel 2. Subset of the tweet dataset

No Tweets

1 b’@p_genedi Wah Mantep nih Ruangguru semakin Berinovasi dengan menu baru \xf0\x9f\xa5\xb0’

2 “b’@edcfess2 Mulai kelas 8 nyicil2.. buat un smp aku ga bimbel, Cuma ngandelin pt di sekolah sama zenius aja

wkwk. Alhamdulillah dapet 36 \xf0\x9f\x98\xab”

3 b’@anakcangtip terimakasih @ruangguru_ berkatnya aku beres ujian pertama xixi’

4 “b’zenius error yaa? Aku bukaa di web kok “”hljsj lite: network error”” teruss… helpp”

5 “b’mau lo quipper, zenius, ruangguru, brainly adalah jalan terbaique. https://t.co.2aBBJgcuXk”

Data Cleansing, Case Folding, and Tokenization

Before the normalization process, the data must be cleaned to reduce data variance. The data cleansing

stage uses regular expressions to remove punctuation marks, symbols, and URLs, which often occurred

specifically in the tweet dataset. This had to be done as URL and symbols have no contribution in the future

process. Afterwards, the case folding and tokenization processes are carried out. The tweets will be

converted at the case folding stage by lowercasing every letter. By lowercasing each letter, we created a

well-uniformed dataset. At the tokenization stages, every word that exists within a sentence is tokenized

into a list. This stage will facilitate the spell-correction stage, where when making spelling corrections, the

input received must be in the form of a single word and not sentences.

Spell Correction

The spell correction method is important when dealing with vast user inputs, in this case, users’ tweets.

Thus, several similarity measure algorithms will be used and compared. The algorithms that will be

compared are Levenshtein Distance, Jaro-Winkler Distance, and Smith-Waterman. The process of spell

correction can be seen in Figure 2.

Figure 2. Spell correction scheme

The scheme of the spelling correction process starts with checking word-by-word input with the words in

the dictionary. The dictionaries used are the slang dictionary and the formal dictionary. The slang dictionary

is a collection of informal words. Like other languages, Indonesian has several forms of everyday language

[11]. Examples of slang dictionaries can be seen in Table 3. A formal dictionary is a collection of formal

words. This dictionary is used to determine which words should be normalized by common words in the

dictionary. Examples of formal dictionaries can be seen in Table 4.

4 | Scientific Journal of Informatics, Vol.9, No.1 May 2022

Tabel 3. Slang dictionary

Slang Formal

Met Selamat

Netas Menetas

Nyenengin Menyenangkan

Udah Sudah

Gitu Begitu

Tabel 4. Formal dictionary

Formal
abad

abadi

abal

abar

abdi

If a word cannot be found in both dictionaries, then it is necessary to correct the spelling. Spelling correction

is done by calculating the similarity of words to each word in a formal dictionary. The most similar

dictionary’s word will replace the word in the dataset. In this stage, three algorithms will be used to calculate

the similarity. The algorithm that will be compared is Levenshtein Distance, Jaro-Winkler Distance, and

Smith-Waterman.

Levenshtein Distance

Levenshtein Distance, proposed by Vladimir Levenshtein in 1965, is an algorithm for calculating the

distance between two texts or groups of characters [12]. This distance is calculated based on the minimum

number of transformations of a string into another string, which includes deletion, insertion, and

replacement [13]. The Levenshtein distance between two strings 𝑎, 𝑏 (which have lengths | 𝑎 | and | 𝑏 |)
can be defined as (1).

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗) =

{

 𝑚𝑎𝑥(𝑖, 𝑗), if 𝑚𝑖𝑛(𝑖, 𝑗) = 0

𝑚𝑖𝑛 {

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗 − 1) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎≠𝑏)

 otherwise
 (1)

Where 1𝑎≠𝑏 is equal to 0 when 𝑎𝑖 = 𝑏𝑗 and equal to 1 otherwise.

Jaro-Winkler Distance

The Jaro-Winkler process proposed by William E. Winkler is refined by the Jaro Distance algorithm [14].

Jaro's distance algorithm determines the similarity value of two words by counting the number of characters

that correspond to the two words that are not too far away and reducing the number of characters that match

up to half of the number of characters undergoing transposition. The similarity value of the Jaro Distance

algorithm can be calculated by (2), where |𝑠𝑖| is Length of the string 𝑠𝑖, 𝑚 is the number of macthing

characters, and 𝑡 is the half of the number of transpositions [15].

𝑠𝑖𝑚𝑗 = {
0,𝑚 = 0

1

3
(
𝑚

|𝑠1|
+

𝑚

|𝑠2|
+
𝑚−𝑡

𝑚
) ,𝑚 ≠ 0

 (2)

The characters in 𝑠1 and 𝑠2 is declared match if the position difference in certain position is not more than:

|
𝑚𝑎𝑥(|𝑠1|∙|𝑠2|)

2
| − 1 (3)

Winkler added the application of penalties for inappropriate characters in the first four characters in the

Jaro Distance algorithm. The Jaro-Winkler similarity value is defined as follows:

𝑠𝑖𝑚𝑤 = 𝑠𝑖𝑚𝑗 + 𝑙 𝑝(1 + 𝑠𝑖𝑚𝑗) (4)

Scientific Journal of Informatics, Vol.9, No.1 May 2022 | 5

Where 𝑠𝑖𝑚𝑗 is the Jaro similarity, 𝑙 is the length of common prefix (capped at 4), and 𝑝 is a constant scaling

factor for how much the score is adjusted upwards for having common prefixes.

Smith-Waterman

The Smith-Waterman algorithm is an algorithm used to compare two nucleotide sequences or protein

structures in the field of bioinformatics. By applying the sequence alignment function of the Smith-

Waterman algorithm, the calculation of the text-similarity with the smith-waterman algorithm can be

applied based on the word order [16]–[18].

The string-matching process between two strings will produce identical/similar alignment (hit) with or

without string sequence changes such as deletion, insertion, and replacement [16]. The string matching

between two strings 𝐴 = 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 and 𝐵 = 𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑛 can be applied by the following steps.

First, create a substitution matrix using equation (5).

𝑠(𝑎𝑖 , 𝑏𝑗) = ∑ 𝑠(𝑎𝑖 , 𝑏𝑗)
k
i,j (5)

If there is a match, assign +1, if there is a mismatch, assign -1, and if there is a gap, assign -2 as shown in

(6).

𝑠(𝑎𝑖 , 𝑏𝑗) = {
+1, 𝑎𝑖 = 𝑏𝑗
−1, 𝑎𝑖 ≠ 𝑏𝑗

 (6)

Second, create scoring matrix 𝑀[𝑖][𝑗] where 𝑀[𝑖][0] = 0 and 𝑀[0][𝑗] = 0 . The size of the score matrix

is set to be (𝑙𝑒𝑛𝑔𝑡ℎ(𝐴) + 1) ∗ (𝑙𝑒𝑛𝑔𝑡ℎ(𝐵) + 1). Third, score each element of the scoring matrix using (7):

𝑀[𝑖][𝑗] = 𝑚𝑎𝑥 {

𝑀[𝑖 − 1][𝑗 − 1] + 𝑆(𝑎𝑖 , 𝑏𝑗)

𝑀[𝑖 − 1][𝑗] + 𝑐 𝑖𝑓(𝑎𝑖 , −)

𝑀[𝑖][𝑗 − 1] + 𝑐 𝑖𝑓(−, 𝑏𝑗)

 (7)

With the input in the matrix being the best similarity value in the prefix of the two strings, 𝑐 is the cost of

a gap expressed in a linear penalty gap as 𝐶𝑘 = 𝑘𝐶𝑙 where 𝑘 is the length of the gap. Fourth, traceback from

the element with the highest score to an element with score 0, from the bottom to the top.

RESULT AND DISCUSSION
The results of this study are divided into two parts namely data from questionnaires and data from tweets.

The results were obtained after experimenting with five repetitions.

Result of the questionnaire data

Table 5 below shows the experimental result of normalization on questionnaire data using Levenshtein

Distance, Jaro-Winkler Distance, and Smith-Waterman.

Table 5. Result of the questionnaire data

Algorithm Time(second) Accuracy (%)

Levenshtein Distance 47.36 44.90

Jaro-Winkler Distance 31.01 33.62

Smith-Waterman 437.72 37.31

The Jaro-Winkler algorithm spent 31.01 seconds; the fastest running time compared to two other

algorithms. The Levenshtein Distance algorithm spent 47.36 seconds, followed by the Smith-Waterman

algorithm which spent the longest time processing the questionnaire data, 437.72 seconds. In the term of

accuracy, the Levenshtein Distance algorithm scored the highest accuracy, achieving 44.90%. The Smith-

Waterman and Jaro-Winkler algorithm was followed, scoring 37.31% and 33.62%, respectively. Regarding

running time and accuracy score, the Levenshtein Distance algorithm is better than the two others. Although

spending longer running time than the Jaro-Winkler Distance algorithm, there is no significant difference,

as the difference is only a few seconds. On the other side, even when the Smith-Waterman algorithm scored

higher accuracy than the Jaro-Winkler algorithm, it does not appear to be a better option, as it spent about

14 times longer training times than the other two algorithms.

6 | Scientific Journal of Informatics, Vol.9, No.1 May 2022

Result of the tweet data

Table 6 below shows the experimental result of normalization on the tweet data using Levenshtein Distance,

Jaro-Winkler Distance, and Smith-Waterman.

Table 6. Result of the tweet data

Algorithm Time(second) Accuracy (%)

Levenshtein Distance 107.24 60.04

Jaro-Winkler Distance 69.27 54.69

Smith-Waterman 973.27 46.77

The Jaro-Winkler Distance algorithm spent the fastest running time of 69.27 seconds, followed by the

Levenshtein Distance algorithm and the Smith-Waterman algorithm, which scored 107.24 seconds and

973.27 seconds, respectively. In terms of accuracy, the Levenshtein Distance algorithm achieved 60.04%.

The Jaro-Winkler Distance achieved 54.69%, and the Smith-Waterman algorithm achieved 46.77%. In line

with the result of the questionnaire data, the Levenshtein Distance performs better compared to the others.

Although, there are differences in the gap of time and accuracy between the Levenshtein Distance and Jaro-

Winkler Distance compared to the previous section. Firstly, the gap in time between the Levenshtein

Distance and Jaro-Winkler Distance is increased by around 38 seconds (around 17 seconds on the

questionnaire dataset). Secondly, the gap in accuracy scores between these two algorithms is narrowed,

having approximately 5.35% in differences (around 11.28% on the questionnaire dataset). Also, in this

experiment, the Smith-Waterman algorithm did not score any better than others in terms of time and

accuracy.

CONCLUSION

Based on the experimental results, it can be concluded that the Jaro-Winkler Distance algorithm can

normalize the two Indonesian datasets quickly. However, in terms of accuracy, the Levenshtein Distance

algorithm provides relatively better results compared to Jaro-Winkler and Smith-Waterman. The Smith-

Waterman algorithm may not be a better choice because it consumes much time and has mediocre accuracy

scores.

REFERENCES

[1] Y. Chen, Z. Ding, Q. Zheng, Y. Qin, R. Huang, and N. Shah, “A history and theory of textual event

detection and recognition,” IEEE Access, vol. 8, pp. 201371–201392, 2020.

[2] Y. Li, A. Algarni, M. Albathan, Y. Shen, and M. A. Bijaksana, “Relevance feature discovery for

text mining,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 6, pp. 1656–1669, 2015.

[3] I. E. Agbehadji, H. Yang, S. Fong, and R. Millham, “The Comparative Analysis of Smith-

Waterman Algorithm with Jaro-Winkler Algorithm for the Detection of Duplicate Health Related

Records,” 2018 Int. Conf. Adv. Big Data, Comput. Data Commun. Syst. icABCD 2018, pp. 1–10,

2018.

[4] R. Sproat, A. W. Black, S. Chen, S. Kumar, M. Ostendorf, and C. Richards, “Normalization of non-

standard words,” Comput. Speech Lang., vol. 15, no. 3, pp. 287–333, 2001.

[5] G. Slamova and M. Mukhanova, “Text normalization and spelling correction in Kazakh language,”

CEUR Workshop Proc., vol. 2268, pp. 221–228, 2018.

[6] I. G. B. B. Nugraha and R. D. Rizqullah, “Normalisasi Kata Tidak Baku yang Tidak Disingkat

dengan Jarak Perubahan,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 3, p. 218, 2019.

[7] E. Lefever, S. Labat, and P. Singh, “Identifying cognates in English-Dutch and French-Dutch by

means of orthographic information and cross-lingual word embeddings,” Lr. 2020 - 12th Int. Conf.

Lang. Resour. Eval. Conf. Proc., no. May, pp. 4096–4101, 2020.

[8] Y. Abdellah, A. S. Lhoussain, G. Hicham, and N. Mohamed, “Spelling correction for the Arabic

language-space deletion errors,” Procedia Comput. Sci., vol. 177, pp. 568–574, 2020.

[9] K. H. Wai, Y. K. Thu, H. A. Thant, S. Z. Moe, and T. Supnithi, “String Similarity Measures for

Myanmar Language (Burmese),” Proc. First Int. Work. NLP Solut. Under Resour. Lang. (NSURL

2019) co-located with ICNLSP 2019 - Short Pap., pp. 94–102, 2019, [Online]. Available:

https://www.aclweb.org/anthology/2019.nsurl-1.14

[10] A. Y. W. Finansyah, “Analisis Perbandingan Kinerja Algoritma Similarity Measure sebagai

Tahapan Data Preprocessing: Text Normalization Bahasa Indonesia Untuk Analisa Sentimen,”

Universitas Gadjah Mada, 2020.

Scientific Journal of Informatics, Vol.9, No.1 May 2022 | 7

[11] N. Aliyah Salsabila, Y. Ardhito Winatmoko, A. Akbar Septiandri, and A. Jamal, “Colloquial

Indonesian Lexicon,” Proc. 2018 Int. Conf. Asian Lang. Process. IALP 2018, pp. 226–229, 2019.

[12] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,” Sov.

Phys. Dokl., vol. 10, no. 8, pp. 707–710, 1966.

[13] Y. W. Berger, B., Waterman, M. S., & Yu, “Levenshtein distance, sequence comparison and

biological database search,” IEEE Trans. Inf. Theory, vol. 67, no. 6, pp. 3287–3294, 2021.

[14] B. Kilic and F. Gülgen, “Investigating the quality of reverse geocoding services using text similarity

techniques and logistic regression analysis,” Cartogr. Geogr. Inf. Sci., vol. 47, no. 4, pp. 336–349,

2020.

[15] A. Yagahara, M. Uesugi, and H. Yokoi, “Identification of synonyms using definition similarities

in japanese medical device adverse event terminology,” Appl. Sci., vol. 11, no. 8, p. 3659, 2021.

[16] S. Y. Yuliani, S. Y. Yuliani, S. Sahib, M. F. Abdollah, Y. S. Wijaya, and N. H. M. Yusoff, “Hoax

news validation using similarity algorithms,” J. Phys. Conf. Ser., vol. 1524, no. 1, 2020.

[17] F. Habibie, Afiahayati, G. B. Herwanto, S. Hartati, and A. Z. K. Frisky, “A Parallel ClustalW

Algorithm on Multi-Raspberry Pis for Multiple Sequence Alignment,” Proc. - 2018 1st Int. Conf.

Bioinformatics, Biotechnol. Biomed. Eng. BioMIC 2018, no. 1, pp. 1–6, 2019.

[18] Afiahayati and S. Hartati, “Multiple sequence alignment using Hidden Markov model with

augmented set based on BLOSUM 80 and its influence on phylogenetic accuracy,” 2010 Int. Conf.

Distrib. Fram. Multimed. Appl., pp. 1–8, 2010.

