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Abstract.  

Purpose: Consumer opinion is one of the essential keys that affect the success of a product. Sentiment analysis of 
consumer opinion is needed to find out information about customer satisfaction for companies in the decision-making 

process. The traditional sentiment analysis process extracts a complete sentiment from a single sentence. However, it 

does not consist of only one sentiment in one sentence. The total number depends on the number of aspects that make 

up the sentence. Therefore, a sentiment analysis process is needed to pay attention to aspects. 
Methods: This research focuses on product reviews from Indonesian e-commerce on several aspects of sentiment. Uses 

fastText word embedding to avoid Out of Vocabulary in datasets and Gated Recurrent Units for aspect spread detection. 

Sentiment classification on aspects using the Memory Network method. 

Result: The experiment results showed that aspect-based sentiment classification predictions had an accuracy of 83% 
compared to 78% overall classification predictions for review texts, indicating that aspect-based sentiment analysis can 

improve model performance on product review classification predictions. 

Novelty: Most product reviews analysis use document-level classification to extract and predict sentiment reviews, 

aspect-based analysis can be applied to product reviews for better sentiment understanding, using Memory Network to 
store important information explicitly on aspects and polarity. 
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INTRODUCTION 
Technological advances have influenced buying and selling activities in e-commerce to become 

increasingly popular [1]. E-commerce is becoming popular, supported by easy access via mobile phones. 

Consumer access becomes easier, more convenient and faster when making buying and selling transactions 

[2]. Customer satisfaction is an important factor in increasing product attractiveness [3]. E-commerce 

platforms, in general, have provided a feature of providing feedback or product reviews. This feature is 

given to consumers who have completed transactions. Product review information can influence potential 

consumers in determining transaction decisions. The massive number of e-commerce transactions resulted 

in a massive number of product reviews as well. 

 

Sentiment analysis is one method of product review analysis. Sentiment analysis is a technique or method 

used to identify how sentiment is expressed using text and how that sentiment can be categorized as polarity 

[4]. Each part of the document has its own polarity [5]. The application of the sentiment analysis method is 

very broad in the field of language processing with the aim of analyzing opinions, evaluations, attitudes, 

judgments and emotions on a topic [6]. There are three types of sentiment analysis: document-level analysis, 

sentence-level analysis, and aspect level analysis [7]. Sentiment analysis in product reviews generally 

analyzes polarity at the document level [8]. This approach has limitations because it cannot extract all 

sentiment polarities contained in the data. To avoid this, sentiment analysis can be narrowed down to an 

aspect-based level. 

 

Aspect-based sentiment analysis (ABSA) is the process of extracting sentiment from every aspect contained 

in a sentence. In addition, ABSA also groups aspects based on their semantic suitability [9]. The process of 

extracting aspect sentiment by paying attention to related words. For example, "This laptop is good, but the 
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price is high", the sentiment aspects of "laptop" and "price" have positive and negative values , respectively. 

ABSA performs aspect extraction first and then analyzes the polarity of the sentiment. Previous research 

related to ABSA has been carried out by many researchers with various methods. One of them is the 

machine learning model method. Naïve Bayes machine learning model with Chi-square feature selection 

has been used for ABSA in the SemEval-2014 dataset [10]. The research still uses a bag-of-words 

vectorization process so that it is still vulnerable to out-of-vocabulary (OOV). Research using the Naïve 

Bayes model, Support Vector Machine (SVM) and Iterative Decision Tree is compared with the 

vectorization process of Binary Term (BT), Term Frequency (TF) and Term Frequency - Inverse Document 

Frequency (TF-IDF) [11]. The study is also susceptible to the occurrence of OOV. 

 

Exploration and testing of sentiment analysis in the product review domain continue to grow to the use of 

deep learning methods. ABSA research with Bidirectional Gated Recurrent Unit (Bi-GRU) and Multi-Level 

Attention has been carried out on healthcare datasets [12]. The results of the study were able to outperform 

previous methods such as Gated Convolutional network with Embedding Aspect (GCAE), Sentic Long 

short-term memory (SLSTM) and Char Sentic LSTM (CSLSTM). GRU has similarities with LSTM in 

processing text data. The difference is that the GRU does not have a cell state. Bi-Gru also has lower 

complexity than LSTM while still providing comparable performance. The LSTM model has been used for 

ABSA research on the evaluation of Amazon e-commerce products [13]. 

 

Aspect-based research on Indonesian language data has been carried out on the subject of tourism using the 

Naïve Bayes machine learning model [14]. Another aspect-based sentiment analysis study was conducted 

on the subject of restaurants with datasets obtained from zomato and the SVM model used as the basis for 

learning [15]. Learning the context of information on data and aspects affects the process of extracting 

aspect and sentence representations separately [16]. The study used interactive attention, which succeeded 

in increasing the effectiveness of the model with better precision values. The weakness of interactive 

attention is that the model tends to fail to associate a context with aspects of multi-aspect analysis. Another 

study related to the Memory Network conducted a trial test on aspect matching and sentiment 

information[9]. The study succeeded in obtaining better precision on multi-aspect information associations. 

 

Another study related to ABSA uses word embedding as a data representation in vector form. Research on 

sentiment analysis on aircraft object data sourced from Twitter compares two-word embedding [17]. The 

study compared fastText and AraVec-Web. fastText, which has been trained from Arabic Wikipedia data, 

produces better performance than AraVec-Web. Another study uses fastText as word embedding in student 

feedback analysis [18]. Word embedding used are fastText, GloVe, Word2Vec and MOOC. The results 

from fastText are able to outperform the other three word embedding from the F1 score measurement. 

FastText performs the representation process on character-level information. 

 

In this study, aspect-based sentiment analysis will be carried out on product review data from one of the e-

commerce sites in Indonesia, with a focus on seeing the multi-aspect effect on the accuracy of sentiment 

prediction results. To avoid the occurrence of Out of Vocabulary (OOV), the Indonesian language pre-

trained fasttext embedding model is used in the Indonesian product review data. The GRU method is used 

for the extraction and distribution of aspects with the aim of increasing the accuracy of sentiment polarity. 

As a classification problem, we use the evaluation metrics of Precision, Recall, F-score, and Accuracy to 

analyze Memory Network’s performance for aspect-based sentiment analysis on product review. 

Contributions to this research are the use of the Memory Network method in aspect-based sentiment 

analysis to match the aspect value and sentiment to the review sentence and the implementation of sentiment 

prediction using the Indonesian e-commerce dataset. 

 

Sentiment Aspect 

Aspect is the topic of discussion, which is the subject of the sentence. on aspect-based sentiment analysis, 

the sentiment classification process focuses on each aspect. Before being analyzed sentimentally, aspects 

are first extracted from the sentence. The aspect extraction process pays attention to the features of the 

phrases in the related sentences. Several studies related to aspect extraction can use rule-based methods that 

produce aspects and opinions that are directly related. This method performs aspect extraction based on 

predetermined rules [19]. The other method performs aspect extraction first and continues with opinion 

extraction from aspects related to a certain distance [20], [21]. 
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The results of the aspect extraction are then carried out with a sentiment analysis whose analysis process 

takes into account the supporting words of the aspect. The word supporting the aspect is in the form of an 

opinion that explains or complements the aspect. The sentiment analysis process from the aspect has been 

carried out by many methods. Research that combines particle swarm optimization is carried out with 

feature selection and ensemble learning, the basic algorithms used are Maximum Entropy (ME), 

Conditional Random Field (CRF) and Support Vector Machine (SVM). The dataset that became the basis 

of the analysis was SemEval-2014 with the data used, namely restaurants and laptops [22]. The process of 

analyzing the smart government review data with aspect-based sentiment analysis uses the lexicon-based 

analysis method with the SVM machine learning algorithm. In this study, pre-processing was carried out 

to handle negation, intensification, downtoners, repetitive characters, and special cases of opinion-negation 

rules [23]. The accuracy results obtained outperform the previous analysis by Manek [24] which used a 

Gini index-based SVM. 

 

Gated Recurrent Units (GRU) 

Gated Recurrent Unit (GRU) is a sequential-based deep learning model. This model is the development of 

the Recurrent Neural Network (RNN). RNN is a form of Artificial Neural Network (ANN) architecture 

whose analysis process pays attention to sequential data. GRU has the advantage of overcoming the 

problem of gradient values that disappear in the training process. In the GRU there are two components of 

information control or can be called a gate, namely the reset gate and the update gate. The reset gate on the 

GRU will determine the merging of new inputs to existing information, and the update gate will determine 

a lot of important information to be stored. The GRU was proposed by Cho [25] who proposed an LSTM 

development method with the aim of obtaining an algorithm with adaptive units to capture dependencies 

from different timescales. Similar to the units in the LSTM, the GRU has a gating unit or gates that modulate 

the flow of information within the unit, but without separate memory cells. 

 

The use of GRU as a method of learning aspect context information is carried out by Wang [7] to get a 

representation of aspects in sentences with better accuracy. Another study used GRU as an aspect detection 

process in e-commerce datasets by analyzing the results of word embedding [26], and succeeded in 

outperforming the fully-connected layer which analyzed the vector results from the bag of words in terms 

of precision measurement, recall and f1- scores. The GRU method in learning context information on 

aspects has good results with lower complexity in improvising the accuracy of aspect-based sentiment 

classification predictions [27]. 

 

Memory Network 

Memory Network is a machine learning method that focuses on long-term memory inference in the process 

stage for classification prediction. Memory Network has 5 components, namely memory, I as input feature 

representation, G as memory that will be updated from input feature representation, O as output 

representation, and R as response to output representation. In the application of text classification, text as 

input will be received on I which is then stored in the memory of module G, on O the output feature is 

performed based on the existing memory in module G, on R will be decoded output based on the data stored 

in memory. The detailed schematic of the Memory Network is shown in Figure 1. 

Memory Network proposed by Jason [28], who are members of the Facebook Research AI team with a 

strategy of using Long-term memory that can be read and written-to processes with the aim of using 

information in memory to make predictions. Memory Network, a type of neural network that can store 

context information for words in external memory, Tang [29] first tried to use the Memory Network method 

 
 

Figure 1. Memory Network Scheme 

 

 
 

Figure 1. Memory network scheme 
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in aspect-based sentiment analysis and was able to capture the importance of context in predicting aspect 

sentiment. The use of the Memory Network with weight learning using the recurrent network model has  

also been carried out Chen [30] with the ability to capture important information from context to aspects 

that are better. 

 

METHODS 

The research implementation uses a dataset sourced from an Indonesian e-commerce. The e-commerce data 

used is Lazada. The data can be found publicly on Kaggle under the title “Lazada Indonesian Reviews”. 

The process of retrieving data by scraping using puppeteer with Node.js. The dataset contains product 

review information with 15 different columns, namely itemId, category, name, rating, originalRating, 

reviewTitle, reviewContent, likeCount, upVotes, downVotes, helpful, relevanceScore, boughtDate, 

clientType, and retrievedDate. Of the 15 columns selected 3 columns that show important information 

related to the review, namely category, Review text, relevanceScore. The data will be word embedding, 

aspect extraction, and classification, an illustration of the stages of the research method can be seen in 

Figure 2. 

 

Preprocess Data 
Data preprocessing is the process of transforming data from raw datasets into data that can be processed by 

learning models. The dataset cannot be directly analyzed by the learning model. This is because the format 

of the dataset is not appropriate. The raw dataset still contains a lot of data that is not needed at the time of 

analysis. Some unneeded data such as stopwords and non-uniform word character writing. Stopwords are 

words that appear frequently so that they are considered not to have significant semantic meaning. Writing 

words on raw data is usually not in accordance with grammatical writing. One example is data that uses 

capital letters in the middle such as "keRen". The process of data uniformity is changed to the lowercase 

form. 

 

The dataset used in this study is not yet labeled, so manual labeling is required by the researcher. The 

amount of data used for testing amounted to 1180 data. The data labeling format process is inspired by 

SemEval 2015 task 12. The features used are review text, number of aspects, aspect details and aspect 

sentiment. The results of manual labeling show that each total aspect is between a distance of 1 to 7. The 

polarity class of aspect sentiment is grouped into neutral, positive and negative. The polarity of the 

sentiment on the same aspect in different sentences has various values. For example, the "HP battery" aspect 

has a positive sentiment value in the first sentence and this aspect has a negative sentiment value in the next 

sentence. The difference in aspect sentiment values can avoid the case of dominant data in one class so as 

to minimize the occurrence of an unbalanced number of classes. The pre-processing stages of the data in 

this study were data cleaning, remove stopwords, stemming and labeling. The pre-process stage in this 

research uses the literary python library. Literature has been equipped with a stopword list in Indonesian 

and a corpus in Indonesian. The library has been widely used in research in the field of information retrieval 

systems. Literature has been equipped with a stopword list in Indonesian and a corpus in Indonesian. The 

library has been widely used in research in the field of information retrieval systems. Literature has been 

equipped with a stopword list in Indonesian and a corpus in Indonesian. The library has been widely used 

in research in the field of information retrieval systems. 

 

Data Cleaning 

Data cleaning is the process of cleaning the dataset from some incorrect, duplicate, inconsistent and 

incomplete data. Data cleaning also removes some data that tends to become noise during the analysis 

process. The purpose of data cleaning is to process raw datasets that are still filled with inappropriate data 

into clean data. Clean data has a high probability to produce optimal analysis. The data cleaning process in 

this study includes cleaning and adjusting the characters that are not used in the analysis process. 

 

Case folding also applied to uniform all data into lowercase. Case folding produces cases of all words being 

the same so that they can optimize the analysis process, especially from the detection of duplicates and data 

that do not match. The next deleted data are website addresses, phone numbers and random characters. The 

data deletion process uses the regex feature in the python programming language. 

 

An example of data cleaning by taking one part of the data on the Lazada e-commerce dataset, namely from 

the data "Barang diterima dengan kondisi yang baik tapi packagingnya kurang" changed to "barang diterima 

dengan kondisi yang baik tapi packagingnya kurang". 



 

Scientific Journal of Informatics, Vol. 9, No. 1, May 2022 | 77 

Remove Stopword 

Remove stopword is the process of removing words that often appear in the text. These words are articles, 

prepositions, pronouns, conjunctions and others. Stopword was removed because it has less information 

than other words. The frequency of occurrence of very high stopwords tends to produce noise during the 

analysis process. Stopwords are also removed with the aim of saving memory efficiency and optimizing 

the computational analysis process. 

 

Stopword is deleted based on a pre-compiled word list. If there are words in the dataset that are the same 

as the list of words in the stopwords, the data will be deleted. The stopword removal process in this study 

utilizes the word list available in the literary python library. 

 

An example of implementing a remove stopword on a dataset is the data "barang diterima dengan kondisi 

yang baik tapi packagingnya kurang" changed to "barang diterima kondisi baik packagingnya kurang". 

 

Stemming 

Stemming is a process of transformation from the affixed form to its root form. Literally stemming means 

cutting affixes or changes and basic words. Affixes that are often encountered are prefixes, suffixes, infixes, 

reduplications, inflections and others. Stemming aims to make data that have the same basic words uniform. 

This makes the computational analysis process efficient and can optimize the results. The stemming process 

in this study uses the literary python library. The library uses a dictionary of basic words to match the 

analysis data. 

 

An example of the implementation of stemming on the dataset is from the data "barang diterima kondisi 

baik packagingnya kurang" changed to "barang terima kondisi baik packaging kurang". 

 

Labelling 

Labeling is the process of identifying raw data by adding information as target data in the analysis process. 

Raw data labeling analyzes the content and format of the e-commerce product review dataset. The 

researcher's analysis process is by manually extracting aspects and polarity of sentiment from each product 

review data. The researcher also transformed the dataset format by removing unused data features. The 

labeling process was analyzed using an excel spreadsheet as a data processing tool. 

 

Embedding 

The dataset used in this study is text data. Text data is very easy to understand by humans. However, the 

computer cannot understand it directly, computers only understand data in numeric form. Therefore, a 

conversion process from text data to numeric data is required, which is called embedding. Embedding 

changes the shape of the text data to a vector form as a representation of the text data. The text data that is 

changed is the word. The conversion process pays attention to the distance between the vector values and 

the similarity of the word representation. This optimizes the analysis process. Details of the embedding 

scheme are shown in Figure 3. 

 

 

Figure 3. Embedding process scheme 
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In this study, the embedding model used is FastText. FastText is a library developed by Facebook AI 

Research (FAIR). FastText can train large amounts of data in a short time. The pre-processed data will be 

embedding the data using the Indonesian FastText Pre-trained model. The model has a vector representation 

value that has been trained on the Indonesian wikipedia corpus data. One of the advantages of using 

FastText is to handle words that have never been encountered before (Out of Vocabulary Word). In the 

embedding process, words in the data will be given initial weights based on the model used, on phrase 

weights initialization. 

 

Aspect Extraction 

In this study, to see the distribution of aspects of the data, the data representation is processed using the 

GRU, as the initiation of the input query in the classification model. Because not all words in a sentence 

have sentiment information, it is necessary to distribute the aspects that represent the sentence. The 

distribution of aspects of this sentence is carried out using the GRU method by matching the existing aspects 

with the words in the review sentence. Mathematically it can be written as follows: 

 

𝑆 = [ 𝑤1⨁ 𝑎1,  𝑤2⨁ 𝑎2, … ,  𝑤𝑛⨁ 𝑎𝑖] ∈ 𝑅𝑛       (1) 

 
Next, the sentence representation is used as input to the GRU to study the context of the information from 

the sentence, the GRU formula notation used can be described as follows: 

 

𝑟𝑡 = σ (𝑊𝑟𝑠𝑡 + 𝑊𝑟ℎ𝑡−1)        (2) 

𝑢𝑡 = σ (𝑊𝑢𝑠𝑡 +  𝑊𝑟ℎ𝑡−1)        (3) 

ℎ𝑡 = 𝑡𝑎𝑛ℎ (𝑊. [𝑟𝑡 ∗ ℎ𝑡−1] +  𝑊𝑠𝑡)       (4) 

𝑎𝑡 = (1 − 𝑢𝑡) * 𝑎𝑡−1 + 𝑢𝑡 ∗  ℎ𝑡       (5) 

 

The output of the GRU with the context representation of the aspect information in the sentence will be 

used as an input query on the Memory Network. The use of GRU can see the spread of aspects to context 

and other word information in the review sentence. GRU suitable for use for data sequences that are not too 

large and take less running time with less performance than other learning methods. 

 

Sentiment Classification 

 
Figure 4. Memory network model scheme 
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Memory Network used as a learning model for the classification of sentiment on aspects of seeing the 

suitability of aspects to the context of the sentence, or the dependence of aspects on other aspects. The 

schematic model of the Memory Network can be seen in Figure 4. In the Memory Network, the aspect 

matching stages from the input query to getting the output representation update are called hops. For 

sentiment with multiple aspects, multi-hop is carried out in the learning process. 

 

From the results of the process of representing aspects of the GRU sentence, it will be used as the initial 

memory input initiation in the memory module which will be stored and updated as memory output based 

on the Hop process carried out. Data representation of aspects of the GRU as memory input is formulated 

as follows: 

 

𝑆′ = 𝐺𝑅𝑈(𝑆)         (6) 

 

𝑆′ is the result of a query from the representation process of learning aspects of the GRU context 

information. Then the modeling process with the Memory Network can be seen as follows: 

 

𝑏 = 𝑎𝑆          (7) 

𝑜 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑏)         (8) 

𝑟 = 𝑂𝑆′          (9) 

𝑎 = 𝑎 + 𝑟          (10) 

 

The input representation is stored in the output memory as a query 𝑆, then aspect matching is performed on 

the data to get the response vector value, this value will be used as the next hop memory input. 

 

For sentiment classification, for data with a single aspect, the input, matching, and output processes occur 

in one process or a single hop, while in data with multiple sentiments there is a multiple hop process. 

Softmax activation function as follows: 

 

𝑃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥((𝑎 +  𝑜)𝑊𝑠𝑚𝑎𝑥)       (11) 

𝑦 =  𝑎𝑟𝑔𝑚𝑎𝑥(𝑃[𝑖])         (12) 

 

Where W is the weight of the word, and y is the polarity of the sentiment, namely, positive, negative, and 

neutral. For multiple hops, a similar process is carried out where there is a looping update query in each 

aspect, and sentiment classification is carried out using the softmax activation function to determine the 

polarity of the sentiment consisting of, positive, negative, and neutral. 

 

RESULT AND DISCUSSION 
The trial uses a product review dataset from an Indonesian e-commerce site obtained using Puppeteer from 

Node.js with a total of 38071 data lines in the electronic domain. The snippet of the dataset used can be 

seen in Table 1, where there are 3 columns, namely the category column which is the type of product 

purchase, the Review text is a direct review of the product buyer, and the relevance score is the relevance 

of the review by the buyer on the product which means the relationship between the review and the product 

being purchased, judged by likes and other customer ratings. 

 

Table 1. Dataset of Product Review 
Category Text Review Relevance Score 

Electronics Mantap... Sesuai tidak mengecewakan... Actual 127,sekian sekian... Akselerasi copy 

ok... Suksess selalu ya 

60 

Electronics mantap tidak ada lecet... semoga awet aja... tp jelek nya gak di paking kayu 

pengiriman nya... tp TV nya aman tanpa ada rusak 

59.67 

Electronics baru beli 2 bulan langsung rusak led nya ga nyala, tp suara nya keluar. mau klaim 

garansi gabisa karena data pelanggan tidak dikirim 14 hr setelah pengiriman dan jauh 

di jakarta 

62.5 

Electronics alhamdulillah produk original dan sesuai spesifikasi semua 64.33 

Electronics makasih cepet sampenya cuman 2 hari sampe, semoga awet tv nya 67.32 
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The relevance value in the review is in the range 0-100, the distribution graph of the data relevance value 

can be seen in Figure 5, from 38071 data, data lines are filtered with a relevance value above 59 which is 

the median of the data, the filter results get 1180 data to be used for the modeling and testing process. 

 
Figure 5. Relevancy score distribution 

 

The dataset is then preprocessed to obtain uniform review text data, clean of characters other than review 

words. Then, collecting aspects and labeling the polarity values of the sentiment manually, the 

preprocessing stage of the data before it will be used for modeling can be seen in Table 2. Stemming and 

stopword processing, using the module from python library from the preprocessed dataset, text will be 

embedded using fastText in the data review, and aspects, the weight values used are derived from 300-

dimensional fastText that has been trained using the Indonesian wikipedia corpus. 

 

Table 2. Preprocessed Data 

Stages 

Before Preprocess After Preprocess 

Review Review 

Number 

of 

aspects 

aspects sentiment 

Cleaning Barang sesuai gambar dan 

pesanan ,barang bagus ,dan 

berfungsi dengan baik 👍 , cuma 

packing rada ngeri ngeri CUMA 

lapis bubble warp.. 😊 

Barang sesuai gambar dan 

pesanan barang bagus dan 

berfungsi dengan baik cuma 

packing rada ngeri ngeri CUMA 

lapis bubble warp 

   

Casefolding Barang sesuai gambar dan 

pesanan barang bagus dan 

berfungsi dengan baik cuma 

packing rada ngeri ngeri CUMA 

lapis bubble warp 

barang sesuai gambar dan pesanan 

barang bagus dan berfungsi dengan 

baik cuma packing rada ngeri ngeri 

cuma lapis bubble warp    

Stemming barang sesuai gambar dan 

pesanan barang bagus dan 

berfungsi dengan baik cuma 

packing rada ngeri ngeri cuma 

lapis bubble warp 

barang sesuai gambar dan pesan 

barang bagus dan fungsi dengan 

baik cuma packing rada ngeri ngeri 

cuma lapis bubble warp    

Stopword barang sesuai gambar dan pesan 

barang bagus dan fungsi dengan 

baik cuma packing rada ngeri 

ngeri cuma lapis bubble warp 

barang sesuai gambar pesan barang 

bagus fungsi baik cuma packing 

rada ngeri ngeri cuma lapis bubble 

warp    

Deteksi aspek barang sesuai gambar pesan 

barang bagus fungsi baik cuma 

packing rada ngeri ngeri cuma 

lapis bubble warp 

barang sesuai gambar pesan barang 

bagus fungsi baik cuma packing 

rada ngeri ngeri cuma lapis bubble 

warp 2 

['barang', 

'packing']  

Labelisasi 

sentimen 

barang sesuai gambar pesan 

barang bagus fungsi baik cuma 

packing rada ngeri ngeri cuma 

lapis bubble warp 

barang sesuai gambar pesan barang 

bagus fungsi baik cuma packing 

rada ngeri ngeri cuma lapis bubble 

warp 2 

['barang', 

'packing'] 

['positive', 

'negative'] 

 

The matrix from embedding process will be used as an initial representation for the distribution of aspects 

using the GRU. The distribution of aspects on the GRU uses input, output hyperparameters and Hop value 

limits which can be seen in Table 3. 
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Table 3. GRU hyperparameters 

Hyperparameter Value 

Input Dimension 300 

Output Dimension 300 

Hop 10 

 

From the value of the embedded results, the aspect vector value will be matched in the review sentence, 

then the GRU will study the context of the information from the review sentence to get a new matrix 

representation as input to the Memory Network. From the computational results of the GRU, the 

distribution of aspects, single aspect and multi aspect distribution of the data can be seen in Table 4. 

 

Table 4. Aspect propagation 

Aspect Train Test 

Single Aspect 813 343 

Multi Aspect 1922 312 

 

In the input module, the matrix data representation will be forwarded to the Memory Network model, for 

each aspect of the review data, a response representation is obtained after updating the memory for one 

aspect, this process is carried out by a Hop loop until all aspects of the review sentence matched. Ending 

the hop process, sentiment classification is carried out on the softmax activation function with three 

polarities, positive, negative, and neutral. 

 

The data is trained with the Memory Network model with a total initial trial iteration of 10 epochs, an early 

stop iteration is carried out in the 7th epoch because based on the loss and accuracy values of the training 

data and test data the loss value has increased towards the 8th epoch process, and the value of accuracy 

decreased in the same position, indicating that the error value increased in the 8th epoch, the graph of the 

loss and accuracy values can be seen in Figure 6. 

 

Tests were carried out on 4 scenarios, first scenario sentiment classification trials without aspect analysis, 

then experiment the data with single aspect, the data with multi-aspect, and last by combining single aspects 

and multi-aspects to see the effect of aspect analysis on sentiment classification. From the test results, an 

evaluation of the matrix values of precision, recall, f1-score, and accuracy was carried out to see the 

performance of the Memory Network in sentiment classification in product reviews. 

 
Figure 6. Graph of loss and accuracy 

 

From the evaluation results, sentiment classification without aspect analysis has a matrix evaluation value 

of 64% precision, 52% recall, 55% f1-score, and 78% accuracy. In the single aspect evaluation, the 

evaluation value of the precision matrix is 67%, recall is 58%, f1-score is 49%, and accuracy is 78%. In the 

multi-aspect evaluation results, the evaluation value of the precision matrix is 64%, recall is 58%, f1-score 

is 49%, and accuracy is 73%. Finally, on the results of sentiment evaluation by combining single and multi-

aspect aspects, the evaluation value of the precision matrix is 72%, recall is 64%, f1-score is 67%, and 

accuracy is 83%. The results of the evaluation matrix can be seen in Table 5. 
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Table 5. Matrix evaluation of the model  
Data precision recall F1-score Accuracy 

Document level 0.64 0.52 0.55 0.78 

Single aspect 0.67 0.58 0.49 0.78 

Multi aspect 0.64 0.58 0.49 0.73 

Aspect based 0.72 0.64 0.67 0.83 

 

From the accuracy results, the highest accuracy was obtained in the product review sentiment classification 

trial using the Memory Network on data involving aspect analysis, with an accuracy value of 83% and the 

matrix evaluation value outperforming sentiment classification without aspect, only single aspect, and 

multi-aspect. 

 

CONCLUSION 

Aspect-based sentiment analysis in this study has been carried out using the Gated Recurrent Unit (GRU) 

method as aspect extraction and the Memory Network on aspect-based product sentiment analysis has better 

results, compared to ordinary sentiment analysis with 83% and 78% accuracy values. In the comparison of 

evaluation matrices, aspect-based analysis also has better precision and recall values, both single-aspect 

and multi-aspect. This shows that the adjustment of weights on aspects by paying attention to the value of 

information in the context helps improve the performance of the sentiment classification prediction model 

in product reviews. The results of this study also prove that the assumption of using the Memory Network 

method in aspect-based sentiment analysis research has a good performance for learning and predicting 

multi-aspect sentiment classification on the data. There are still many improvements that can be made in 

the use of the aspect distribution detection method and the use of the Memory Network in aspect-based 

sentiment analysis, especially with the development of the deep neural network method which is getting 

better. 
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