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Abstract.  

Purpose: In travelling, we need to predict travel time so that itinerary is as expected. This paper proposes Support 
Vector Regression (SVR) to build a prediction model. In this case, we will estimate travel time in the Bali area. We 

propose to use a regression model with 8 features, i.e., time, weather, route, wind speed, day, precipitation, temperature 

and humidity information.  

Methods: In this study, we collect real-time data from Global Positioning System (GPS) and weather applications. We 
divide our data into two types: training dataset consisting of 177 data and testing dataset comprising 51 data. The 

Support Vector Regression (SVR) method is used in the training stage to build a model representing data. To validate 

the model, error measurements were carried out by calculating the values of R2, Accuracy, MAE (Mean Absolute 

Error), RMSE (Root Mean Square Error) and Accuracy. 

Result: From the research results, the model obtained is the SVR model with parameters γ = 0.125, ε = 0.1 and C = 

1000, which has a value of R2= 0.9860528612283006. Later, we predict travel times on testing data using the SVR 

model that has been obtained. Based on the result of the research, our model has a 0.8008 MAE (Mean Absolute Error), 
1.2817 RMSE (Root Mean Square Error) and 95.3369% Accuracy. 

Novelty: In this study, we use 8 features to estimate travel time in the Bali area. Furthermore, we will compare the 

KNN regression method (previous studies) with Support Vector Regression (SVR) (proposed method) on a model with 

8 features to estimate travel time. 
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INTRODUCTION 
In the tourism industry, especially in travel agents, it is very important to make travel plans, i.e., determining 

the number of attractions to be visited in one day, estimating travel time to the destination place and others. 

Predicting travel time is very important for travel agents to determine travel rates [1]. To estimate the travel 

time to attractions, travel agents use patterns of the trip they've ever been through earlier in the day but have 

not paid attention to the factors that affect the travel time. Many factors can affect the duration of the trip. 

In this study, we propose 8 features that affect travel time, i.e., time, weather, route, wind speed, day, 

precipitation, temperature and humidity information.  

 

Time is a factor that can affect travel time because there is a pattern of rush hours, i.e., in the morning, 

many people will move to work, which can cause the volume of vehicles on the road to be more crowded 

and affect travel time [2]. Furthermore, weather can also affect travel time, i.e., when it rains, a lot of 

vehicles will slow down their speed vehicle so that it can cause the travel time to be longer. Routes 

information can also affect travel times, such as during peak hours on certain routes there will be congestion, 

so alternative routes are needed, so that travel times are faster. Later wind speed can affect the travel time, 

i.e., if the wind speed is fast, it will cause the vehicle's speed to slow so that the travel time becomes longer 

[2].  
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The next factor, information on the day also affects because there is usually a travel pattern on certain days 

such as on weekends, the road to the tourist attraction may be crowded so that the travel time will be longer. 

Furthermore, precipitation information can also affect travel time, i.e., if precipitation in your area is high, 

it can make people not want to leave the house. This can result in the volume of vehicles coming out to be 

a little so that travel time becomes faster. Then the temperature information, i.e., if the temperature in your 

area is extreme, can make people stay at home, which causes the volume of the vehicle to be less crowded 

and speed up travel time. The last factor is humidity, if the humidity in your area is high then it can cause 

the environment to feel hot so it can make people not want to leave the house which will cause the vehicle 

volume to be less crowded so that travel time becomes faster [2]. After the 8 features are determined, then 

we will predict the travel time with cases in the Bali area. In this research, we propose using the Support 

Vector Regression method to predict the travel time. 

 

Several studies have been carried out to predict travel time, i.e., [3] uses a dynamic model to predict the 

bus waiting time in the last halte with the K-Nearest Neighbor (KNN) algorithm. The data used are Global 

Positioning System (GPS) data on the bus, Transit Capacity and Quality of Service Manual, passenger 

volume up and down, and fare payment methods. After that, an evaluation is performed by calculating 

Mean Absolute Error (MAE). From the research, the MAE was calculated at each bus stop with MAE 

values varying from 0.11 to 8.5 [3]. 

 

Research [4] discusses travel time of various kinds on city streets and variance estimation methods by 

analyzing the data set derived from the travel time detected from automatic license plate readers installed 

in the Beijing region. Several factors affect travel time, i.e., traffic incidents, rush hours, work zones, bad 

weather, special events, and fluctuations in traffic demand. High variability indicates unpredictable travel 

times and reduced reliability of traffic services [4]. 

 

Furthermore, [5] use the random forest to predict travel time. There are 14 attributes that affect travel time 

obtained from VISSIM simulation. VISSIM is a software used for traffic simulation developed by PVP in 

Germany. Later, feature selection was performed using Random Forest and obtained 7 variables that were 

important in predicting travel time, i.e., average of travel time, traffic conditions, vehicle density, median 

of travel time, vehicle speed, car density and speed. His research obtained an error estimate with OOB (Out-

of-Bag) at 5.586 [5]. However, this research focused on travel time estimation from 1 city to another using 

1 route. 

 

The next study, [6] predicts travel time using the K-Nearest Neighbor algorithm. The data used comes from 

GPS placed on buses in the Chennai region, India. In his research, an evaluation is performed by calculating 

the MAPE. MAPE calculations were carried out on several trip variations and obtained errors varying from 

11.68 to 29.60% [6]. 

 

The next research, [7] builds a model to predict travel time using vehicle data and the detector system on 

the automatic toll road. By using these two data, the model can increase prediction Accuracy. The data used 

are the number plate detection system, moving vehicle detection system, and GPS located on the vehicle. 

Furthermore, the evaluation of the model is carried out by calculating the MAE and MAPE. The MAE and 

MAPE values obtained were 4.74 and 7.28 [7]. 

 

Later, [8] uses a fuzzy nervous system to estimate travel times. The data used is traffic flow data, i.e., the 

number of vehicles and vehicle speed obtained from the loop detector. The test is done by calculating MAE, 

RMSE, and Mean Absolute Relative Error (MARE). In his research, the MAE value was 3.23, RMSE was 

3.96 and MARE was 0.97 [8]. 

 

Research [9] predicts vehicle travel time using a regression model. The data used is vehicle data which 

consists of 4 features, i.e., personal, traffic, temporal and spatial information [9]. Furthermore, [2] uses a 

regression model consisting of 8 features/variables, i.e., zone, time, day, weather, temperature, wind speed, 

humidity and rainfall information using the KNN regression method to predict travel time. From the results 

of his research, it was found that the prediction Accuracy rate of 88.19% [2].  

 

A few researchers focused on travel time estimation using a small number of features (less than 8 features), 

however, there are still many features that should be used to predict travel times. Therefore, this research 

is focused on using many features that can affect travel time. In this study, we propose using 8 features. A 
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previous researcher [2] focused on travel time estimation with 8 features and KNN regression. Therefore, 

as a comparison, this research intends to estimate the travel time with 8 features using support vector 

regression. Previous research [4]–[6] focused on travel time estimation from 1 city to another using 1 route. 

While in this study intends to predict travel time from 1 city to another city by using 3 routes so that from 

these predictions, transportation users such as travel agents can choose the fastest route to their destination. 

This research aims to compare travel time using the KNN regression method (previous method) and Support 

Vector Regression (proposed method). 

 

Regression models usually use the Ordinary Least Square (OLS) method to create models that fit the data. 

However, if the data used is nonseparable data, the SVR method can produce better predictions than the 

regression model [10], [11]. 

 

METHODS 

In this study, we propose the Support Vector Regression (SVR) method to predict travel time. The stages 

of this study as shown in Figure 1. 

 

 
Figure 1. The stages of this research 

 

Based on Figure 1, the first step is collecting data. We collect travel data via GPS and weather information 

based on weather applications in the Bali region, as shown in Figure 2. In this study, we use 228 data and 

divide the data into two types with a composition of 177 data as training data collected in the range 25 July 

2019 to 1 August 2019 in the Bali region, i.e., from Ngurah Rai Airport to Kuta Beach while 51 data as 

testing data that collected in the range 9 August 2019 to 12 August 2019. 

 

In this study, we collect 8 features based on GPS, i.e., time, route, day as in Figure 2(a) and weather 

applications, i.e., weather, wind speed, precipitation, temperature and humidity information as in Figure 

2(b). Time information is categorized into three types, i.e., morning, afternoon and evening. This time 

information is very important to know because there is a time pattern that often occurs in traffic jams, such 

as when people are active in the morning which can affect congestion. 

 

To get to the Kuta Beach location, the route used has 3 options so that users can choose the best route to 

arrive on time. For route information, three routes are used from the Ngurah Rai Airport to Kuta Beach, 

while the days are categorized into 7 days from Monday to Sunday. In addition, if when travelling the wind 

speed is very high, precipitation, temperature and humidity are also high, it will affect the travel time. 
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(a)     (b) 

Figure 2. Feature retrieval using (a) GPS and (b) weather application 

 

Weather information is categorized into 30 types as shown in Table 1. Changes in the weather in the area 

can also affect travel times. 

 

Table 1. Code of weather 

Code Weather Code Weather Code Weather 

1 sunny (morning) 11 clear with periodic (day) 21 mostly cloudy (night) 

2 sunny (day) 12 clear with periodic (night) 22 change of shower (morning) 

3 sunny (night) 13 cloudy (morning) 23 change of shower (day) 

4 mostly sunny (morning) 14 cloudy (day) 24 change of shower (night) 

5 mostly sunny (day) 15 cloudy (night) 25 shower (morning) 

6 mostly sunny (night) 16 partly cloudy (morning) 26 shower (day) 

7 clear (morning) 17 partly cloudy (day) 27 shower (night) 

8 clear (day) 18 partly cloudy (night) 28 light rain shower (morning) 

9 clear (night) 19 mostly cloudy (morning) 29 light rain shower (day) 

10 clear with periodic (morning) 20 mostly cloudy (day) 30 light rain shower (night) 

 

In the next stage, we apply the Support Vector Regression (SVR) method to training data to build a model 

that can represent data. 

 

Support Vector Regression (SVR) 

Support Vector Machine (SVM) is one of the methods of machine learning used in classification problems 

that maps N samples that are free from each other to the higher dimensional space [12]–[15]. However, in 

its development the SVM method can also be used in regression problems. We apply the SVM method to 

the regression problem is called Support Vector Regression (SVR). This method is very good because it 

can be used in data overfitting problems.  

 

There is a training set 𝑆 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑚, 𝑦𝑚)} with 𝑥 =  {𝑥1, 𝑥2, … , 𝑥𝑛} ∈  𝑅𝑛 is input data and 

𝑦 =  {𝑦1, 𝑦2, … } ∈  𝑅 is output data. 𝐴(𝑥) is a nonlinear mapping that maps the x vector input to the vector 

space, so linear regression in high dimensional vector space can be performed [16]. The regression function 

can be seen in Equation (1) [17]. 

 

𝑦 = 𝑓(𝑥) =  𝑤 ∙ 𝐴(𝑥) + 𝑏  (1) 

 

The regression model of the linear function in Equation (1) is Equation (2) 

 

𝐿(𝑤, 𝑏) = ∑ (𝑦𝑖 − 𝑤𝑥𝑖 − 𝑏)2𝑛
𝑖=1  (2) 
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with:  

𝑠. 𝑡.  𝑦𝑖 − 𝑤𝑥𝑖 − 𝑏 ≤ 𝜀 + 𝜉 , (𝑤, 𝑏) 𝜖 𝑅𝑛+1, 𝜉𝑖  𝜖 𝑅𝑚 

 

The regression function 𝑓(𝑥) is used to get a model that matches the training data. The Ordinary Least 

Squares approach is used to select parameters (w, b) that minimize the sum of the squares deviations from 

data [10], [18]. These problems can be formulated as an unconstrained minimization problems as in 

Equation (3) 

 

min 
𝑤∈𝑅𝑛

 
1

2
 ‖𝑤‖2 +  𝐶 (

1

𝑙
∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑙
𝑖=1 ) (3) 

 

with:  

 

𝑠. 𝑡.  𝑦𝑖 − 𝑤𝑥𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖 , 𝑖 = 1,2, … , 𝑙    
𝑦𝑖 − 𝑤𝑥𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖

∗, 𝑖 = 1,2, … , 𝑙  
𝜀, 𝜉𝑖 , 𝜉𝑖

∗ ≥ 0, 𝑖 = 1,2, … , 𝑙  
 

where:  

 

𝑤 =  ∑ (𝛼𝑖 − 𝛼�̂�)𝐴(𝑥𝑖)
𝑛
𝑗=1  (4) 

 

w is the weight vector with dimension n+1 and constant C> 0 to determine the trade-off between differences 

in the function of the decision, where the tolerance satisfies the upper limit of the deviation of more than ε 

[19], [20]. If deviations are more than ε then penalty of C will be given. We substitute Equation (4) into 

Equation (2) so that we get Equation (5). 

 

𝑦 = ∑ (𝛼𝑖 − 𝛼�̂�)𝐴(𝑥𝑖) ∙ 𝐴(𝑥) +  𝑏𝑛
𝑗=1   (5) 

 

𝐴(𝑥𝑖) ∙ 𝐴(𝑥) is defined as 𝑘(𝑥𝑖, 𝑥) which is a kernel function so that Equation (5) becomes Equation (6) 

 

𝑦 = ∑ (𝛼𝑖 − 𝛼�̂�)𝑘(𝑥𝑖, 𝑥) +  𝑏𝑛
𝑗=1   (6) 

 

Examples of commonly used kernel functions are polynomial kernel function, radial basis function, 

Sigmoid function, etc [21]–[23]. In this study, we use the radial basis function kernel that can be seen in 

Equation (7) because it provides the best performance to predict the load compared to other kernels [24]–

[26]. 

 

𝐾(𝑥, 𝑥′) = 𝑒−𝛾‖𝑥−𝑥′‖2
  (7) 

 

In SVR, support vectors is the value of training data that is on or outside the boundary decision function. 

Therefore, the number of support vectors will decrease as the error value ε increases [27], [28]. In a dual 

formulation, the SVR optimization problem can be seen in Equation (8) 

 

max [−
1

2
∑ ∑ (𝛼𝑖 − 𝛼�̂�)(𝛼𝑗 − 𝛼�̂�)𝑘(𝑥𝑖, 𝑥𝑗)𝑛

𝑗=1
𝑛
𝑖=1 + ∑ (𝛼𝑖 − 𝛼�̂�) 𝑦𝑖 −  𝜀 ∑ (𝛼𝑖 − 𝛼�̂�)

𝑛
𝑖=1

𝑛
𝑖=1 ]  (8) 

 

with: s.t. ∑ (𝛼𝑖 − 𝛼�̂�)
𝑛
𝑖=1 = 0 , 0 ≤ 𝛼𝑖 ≤ 𝐶, 0 ≤ 𝛼�̂� ≤ 𝐶,  

where: 𝛼𝑖 and 𝛼�̂� are Lagrange multiplier. 

  

The following is the algorithm of SVR: 

Algorithm of Support Vector Regression: 

1. Training data 𝑆 = {(𝑥1, 𝑦1), … (𝑥𝑚, 𝑦𝑚)}, with 𝑥 =  {𝑥1, 𝑥2, … , 𝑥𝑛} ∈  𝑅𝑛 and 𝑦 =  {𝑦1, 𝑦2, … } ∈  𝑅  

2. Select the values C, γ and ε 

3. Use the RBF Kernel function 

4. Build and solve the optimization problem in (3) to get the optimal solution: 𝛼 = (𝛼𝑖 , 𝛼�̂�, … , 𝛼𝑙, 𝛼�̂�)𝑇 

5. Build the regression function as in Equation (4), namely: 𝑦 = ∑ (𝛼𝑖 − 𝛼�̂�)𝑘(𝑥𝑖, 𝑥) +  𝑏𝑛
𝑗=1  
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Fit Model 

In regression problems, making a model in accordance with the training data is needed to get a good 

predictive value. To find out that the model used is in accordance with the training data, it is necessary to 

test, one of which is to calculate the coefficient of determination 𝑅2 [29]. The calculation of 𝑅2 can be seen 

in Equation (9) 

 

𝑅2 =
(∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1 )
2

∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1 ∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1
  (9) 

 

The value of 𝑅2 represents what percentage of the model can represent the data [29]. 

 

Evaluation Model 

In the final stage of this research, we perform evaluate on predicted travel time by using RMSE [30] in 

Equation (10), Mean Absolute Error (MAE) [6] in Equation (11) and Accuracy [2], [6] in Equation (12). 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−�̂�𝑖)2𝑁

𝑖=1

𝑁
   (10) 

 

𝑀𝐴𝐸 =
∑ |𝑦𝑖−�̂�𝑖|𝑁

𝑖=1

𝑁
   (11) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (1 −
∑ |

𝑦𝑖−�̂�𝑖
𝑦𝑖

|𝑁
𝑖=1

𝑁
) × 100%   (12) 

 

Where 𝑁 is the number of testing dataset, 𝑦𝑖 is real travel time and �̂�𝑖 is travel time prediction. 

 

RESULT AND DISCUSSION 

In previous studies, travel time was predicted by using the KNN regression method [2]. As a comparison, 

in this study, we develop another model using the support vector regression (SVR) method to predict travel 

times. We collect the data which consists of 8 features in the Bali area and divide the data into 177 training 

data as in Table 2 and 51 testing data as in Table 3. 

 

Table 2. Training dataset (21 of 177 training dataset) 
No. Date Route Day Coded 

Day 

Coded 

Weather 

Temperature Wind Humidity Precipitation Time 

Travel 

1. 25/07/2019 6:09 1 Thursday 5 28 74 9 0.88 0.32 12 

2. 25/07/2019 6:09 2 Thursday 5 28 74 9 0.88 0.32 14 

3. 25/07/2019 6:10 3 Thursday 5 28 74 9 0.88 0.32 15 

4. 26/07/2019 7:27 1 Friday 6 16 75 5 0.88 0.30 13 

5. 26/07/2019 7:27 2 Friday 6 16 75 5 0.88 0.30 14 

6. 26/07/2019 7:27 3 Friday 6 16 75 5 0.88 0.30 14 

7. 27/07/2019 7:40 1 Saturday 7 16 77 11 0.84 0.10 12 

8. 27/07/2019 7:40 2 Saturday 7 16 77 11 0.84 0.10 13 

9. 27/07/2019 7:40 3 Saturday 7 16 77 11 0.84 0.10 14 

10. 28/07/2019 8:18 1 Sunday 1 19 77 11 0.84 0.00 14 

11. 28/07/2019 8:18 2 Sunday 1 19 77 11 0.84 0.00 14 

12. 28/07/2019 8:18 3 Sunday 1 19 77 11 0.84 0.00 15 

13. 29/07/2019 13:04 1 Monday 2 20 79 9 0.83 0.24 17 

14. 29/07/2019 13:04 2 Monday 2 20 79 9 0.83 0.24 19 

15. 29/07/2019 13:04 3 Monday 2 20 79 9 0.83 0.24 17 

16. 30/07/2019 7:27 1 Tuesday 3 16 77 9 0.88 0.16 12 

17. 30/07/2019 7:27 2 Tuesday 3 16 77 9 0.88 0.16 14 

18. 30/07/2019 7:27 3 Tuesday 3 16 77 9 0.88 0.16 14 

19. 31/07/2019 6:24 1 Wednesday 4 16 76 8 0.90 0.24 12 

20. 31/07/2019 6:24 2 Wednesday 4 16 76 8 0.90 0.24 13 

21. 31/07/2019 6:24 3 Wednesday 4 16 76 8 0.90 0.24 13 

 

Based on Table 2, training data were obtained from 25 July 2019 to 1 August 2019 in the Bali region. In 

Table 2, there are 8 features which used, i.e., time, route, day, weather, temperature, wind speed, humidity 

and precipitation information. The time feature has data of the numeric type and is taken from 6 am to 23 
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o'clock. The route feature has data of category type consisting of 3 different routes obtained from GPS. The 

day feature has data of category type which consists of 7 categories of days from Monday to Sunday. The 

weather feature has data of category type which consists of 30 categories as in Table 1. 

 

The temperature has data of the numeric type and the temperature unit used is Fahrenheit. The wind speed 

feature has data of the numeric type and the wind speed unit used is miles per hour (mph). The humidity 

and precipitation have data of numeric type. These features are obtained based on observations from the 

weather application. Each training data contains travel time which is used as historical data. The last column 

in Table 2 is the travel time from Ngurah Rai Airport to the Kuta Beach which has units in minutes. 

 

Table 3. Testing dataset (10 of 51 testing dataset) 
No. Date Route Day Coded 

Day 

Coded 

Weather 

Temperature Wind Humidity Precipitation 

1. 09/08/2019 8:59 1 Friday 6 19 77 16 0.87 0.33 

2. 10/08/2019 5:50 3 Saturday 7 10 74 5 0.90 0.10 

3. 10/08/2019 9:07 1 Saturday 7 16 78 11 0.84 0.07 

4. 10/08/2019 10:00 2 Saturday 7 4 81 11 0.73 0.06 

5. 10/08/2019 12:10 1 Saturday 7 5 83 14 0.69 0.01 

6. 11/08/2019 8:25 1 Sunday 1 19 76 3 0.87 0.10 

7. 11/08/2019 11:27 2 Sunday 1 16 82 11 0.74 0.09 

8. 11/08/2019 18:32 3 Sunday 1 12 79 11 0.84 0.21 

9. 12/08/2019 8:34 1 Monday 2 4 79 7 0.87 0.00 

10. 12/08/2019 13:36 1 Monday 2 5 84 17 0.75 0.10 

 
Based on Table 3, data was obtained from 9 August 2019 to 12 August 2019. Table 3 is a sample of testing 

data which consists of 8 features used to predict travel time based on training data. In the next stage, we 

build a regression model with Equation (13). 

 

𝑦 = 𝑓(𝑥) =  𝑤 ∙ 𝐴(𝑥) + 𝑏                    (13) 

 

where:  

𝐴(𝑥) is a matrix that represents features.  

 

The support vector regression (SVR) method is used to build this prediction model. In this study, the 

parameter can be calculated by Equation (14). 

 

𝛾 =
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒
             (14)

   

 𝛾 =
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒
=

1

8
   

 

was used, parameter 𝜀 = 0.1  and parameter C which varied from 1, 2, 3, ..., 1000. To find out the 

performance of the proposed model, the 𝑅2 value for the various C values is calculated as in Figure 3. 
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Figure 3. The scatterplot of 𝑅2 values for C = 1 to C =1000. 

 
Based on Figure 3, the greater the value of C, the greater the value of 𝑅2and closer to 1. When the value of 

C = 1, the value of R2 is 0.5801677881641607, when the value of C = 2, the value of 𝑅2 is 

0.7115087665074087 and when the value of C = 1000 then the value of 𝑅2 is 0.9860528612283006. 

 

Furthermore, we evaluate by calculating the RMSE, MAE and Accuracy values. We compare the SVR 

method (proposed method) with KNN Regression (previous method) as in Table 4. 

 

Table 4. Evaluation result of model SVR 

Indicator 
Model KNN Regression 

(Previous Method [2])  

Model SVR 

(Proposed Method) 

RMSE 2.9770 1.2817 

MAE 2.1961 0.8008 

Accuracy 88.1819 % 95.3369 % 

 

In Table 4, the RMSE value of the SVR method is 1.2817 smaller than the RMSE value of the KNN 

regression method, indicating that the SVR method is better than the KNN method. For the MAE value, 

the model with the SVR method is 0.8008 also smaller than the KNN regression method, it also indicates 

that the SVR method is better than the KNN method. For accuracy, the model with the SVR method has a 

higher Accuracy rate of 95.3369% which means the SVR method is better. Based on these three 

measurements, it can be concluded that the SVR method is better than the KNN method in travel time 

estimation. 

 

CONCLUSION 

The tourism sector is a very important sector to be developed because it can produce a promising business. 

One of the businesses in the tourism sector is to become a travel agent. To become a travel agent requires 

good planning in making a travel schedule. In making travel plans, travel agents usually estimate travel 

time based on previous travel experience without considering other factors. Therefore, in this study, we use 

8 factors, i.e., time, weather, route, wind speed, day, precipitation, temperature and humidity information. 

This study collected data on travel from Ngurah Rai Airport to Kuta Beach, Bali. The data obtained were 

228 which were divided into 177 training data and 51 test data. The Support Vector Regression (SVR) 

method is used to estimate travel time. To find out the SVR method can represent the data, the value of 

𝑅2 is calculated. Based on the results of the study, it was found that the value of 𝑅2 = 0.9860528612283006 

which interpreted that about 98.60528612283006 % of the SVR method could represent the data. After that, 

a test is carried out using test data and validation by measuring the error using RMSE, MAE and Accuracy. 
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Based on this research, we found that the RMSE value is 1.2817, the MAE value is 0.8008 and the Accuracy 

value is 95.3369%, indicating that the SVR method is a very good travel time prediction model. 
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