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Abstract.  

Purpose: This literature review aims to identify Multimodal Emotion Recognition (MER) in depth and breadth by 

analyzing the topics, trends, modalities, and other supporting sources discussed in research over the years and between 

2010 and 2022. Based on the screening analysis, a total of 14,533 articles were analyzed to achieve this goal.  
Methods: This research was conducted in 3 (three) phases, including Planning, Conducting and Reporting. The first 

step was defining the research objectives by searching for systematic reviews with similar topics to this study, then 

reviewing them to develop research questions and systematic review protocols for this study. The second stage is to 

collect articles according to a pre-determined protocol, selecting the articles obtained and then conducting an analysis 
of the filtered articles in order to answer the research questions. The final stage is to summarize the results of the 

analysis so new findings from this research can be reported. 

Result: In general, the focus of MER research can be categorized into two issues, namely the object background and 

the source or modality of emotion recognition. When looking at the object background, most of the 55% to support 
emotion recognition with a health background, especially brain function decline, 34% based on age, 10% based on 

gender, 1% data collection situation and a small portion of less than 1% related to ethnic culture. In terms of the source 

of emotion recognition, research is divided into electromagnetic signals, voice signals, text, photo/video and the 

development of wearable devices. Based on the above results, there are at least 7 scientific fields that discuss MER 
research, namely health, psychology, electronics, grammar, communication, socio-culture and computer science. 

Novelty: MER research has the potential to develop further. There are still many areas that have received less attention, 

while the ecosystem that uses them has grown massively. Emotion recognition modalities are numerous and diverse, 

but research is still focused on validating the emotions of each modality, rather than exploring the strengths of each 
modality to improve the quality of recognition results. 
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INTRODUCTION 
Emotion recognition may assist humans to understand themselves, understand others, as well as improve 

the overall quality of life [1]. Therefore, the study of emotion recognition continues to grow significantly 

[2]. Emotion recognition itself is a complex phenomenon that involves psychological, physiological, and 

social aspects. Psychological aspects include how emotions are processed and interpreted by the brain, 

while physiological aspects involve the physiological changes that occur in the body when a person 

experiences emotions, such as heart rate and endocrine gland activity. On the other hand, the social aspect 

relates to the way emotions are expressed and influenced by the social and cultural environment. Therefore, 

to understand emotions well, a holistic understanding is required and involves various fields of science, 

such as psychology, neuroscience, biology, anthropology and sociology [3]. 

 

The complexity of emotion recognition demands that emotion recognition computing research also involves 

various aspects of modalities to improve the quality of emotion recognition. This phenomenon has been 

recognized by the emergence of various studies on the topic of multimodal emotion recognition [4], [5] 

with challenges that are still wide open. Ya Li defines the challenges of multimodal emotion recognition 

around datasets, variations in recognition sources (audio, image, video), cultural influences and 
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optimization methods [6]. While Priyanka categorizes the modalities for recognizing emotions into three, 

namely psychological, behavioral and brain signals [5]. 

 

Previous literature study research has actually mapped emotion recognition which resulted in a variety of 

optimization methods, emotion distribution, several open datasheets, and challenges that are still wide open 

[7]–[10]. However, considering the complexity of emotion recognition and the increase in multimodal 

emotion recognition research, it is necessary to review what fields of science are involved in this emotion 

recognition research.  This research will investigate possible fields of science and answer some research 

questions in the field of multimodal emotion recognition in Table 1. 

 

Table 1. Research questions on literature review 

Number 
P 

population 

I 

intervention 

C 

comparison 

O 

outcome 

T 

time 

Research Question 

1.  Any  

science 

Emotion recognition, 

multimodal emotion 

recognition, Multimodal 

Physiological Signal,  

Multimodal Emotion 

Recognition Database 

No 

comparison 

fields of science that 

can be involved to 

improve the quality of 

emotion recognition 

All 

year 

What fields of 

science are involved 

in emotion 

recognition? 

2.  Any  

science 

Emotion recognition, 

multimodal emotion 

recognition, Multimodal 

Physiological Signal,  

Multimodal Emotion 

Recognition Database 

No 

comparison 

the most significant 

journals in the 

multimodal emotion 

recognition field 

All 

year 

Which journal is the 

most significant 

multimodal emotion 

recognition journal? 

3.  Any  

science 

Emotion recognition, 

multimodal emotion 

recognition, Multimodal 

Physiological Signal,  

Multimodal Emotion 

Recognition Database 

No 

comparison 

the most active and 

influential researchers 

who contributed so 

much on the research 

area of multimodal 

emotion recognition 

All 

year 

Who are the most 

active and influential 

researchers in the 

multimodal emotion 

recognition field? 

4.  Any  

science 

Emotion recognition, 

multimodal emotion 

recognition, Multimodal 

Physiological Signal,  

Multimodal Emotion 

Recognition Database 

No 

comparison 

research topics and 

trends in multimodal 

emotion recognition 

2019 

- 

2023 

What kind of 

research topics are 

selected by 

researchers in the 

multimodal emotion 

recognition field? 

 

Recent works that have contributed to Multimodal Emotion Recognition (MER) and Emotion recognition 

(ER) are discussed in this paper, not only in computing but also in other fields. With the research questions 

answered in this paper, we expect that the results of this study will contribute to more optimized possibilities 

for the development of MER research. 

 

METHODS 

This research was conducted in 3 (three) phases, including Planning, Conducting and Reporting based on 

original guidance proposed in [11] and some stages modified with motivation from [10], [12], [13]. The 

first step was defining the research objectives by searching for systematic reviews with similar topics to 

this study, then reviewing them to develop research questions and systematic review protocols for this 

study. The second stage is to collect articles according to a pre-determined protocol, selecting the articles 

obtained and then conducting an analysis of the filtered articles in order to answer the research questions. 

The final stage is to summarize the results of the analysis so new findings from this research can be reported. 

Conducting phase is depicted in the chart in Figure 1. 
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Figure 1. Conducting phase method 

 

Article collection was conducted using publish or perish software by Scopus indexing source. Article 

collection was carried out on April 4, 2023 with several parameters with the results in Table 2. 

 

Table 2. Collected articles 

Number Keywords (search terms) Indexing Year 
Number Of 

Articles 

number of 

citations 

1.  
Emotion Recognition (ER) Scopus 2019 - 

2023 

1000 40.381 

2.  Emotion Recognition (ER) Scopus All year 200 152.398 

3.  
Multimodal Emotion Recognition (MER) Scopus 2019 - 

2023 

852 8.561 

4.  Multimodal Emotion Recognition (MER) Scopus All year 200 34.706 

5.  
Multimodal Physiological Signal (MPS) Scopus 2019 - 

2023 

618 5.793 

6.  Multimodal Physiological Signal (MPS) Scopus All year 200 22.041 

7.  
Multimodal Emotion Recognition Database 

(MERD) 

Scopus 2019 - 

2023 

150 1.721 

8.  
Multimodal Emotion Recognition Database 

(MERD) 

Scopus All year 200 12.875 

Total number of Articles 3,420  

 



 
162 | Scientific Journal of Informatics, Vol. 10, No. 2, May 2023 

The 3,420 datasets obtained were then processed with the following steps: 

1). Merging of datasets result: 

a) 4 terms in a particular year are merged, namely Emotion Recognition, Multimodal Emotion, 

Recognition, Multimodal Physiological Signal, and Multimodal Emotion Recognition 

Database are merged. 

b) 3 terms all year merged, namely Multimodal Emotion, Recognition, Multimodal Physiological 

Signal, Multimodal Emotion Recognition Database 

2). With the results of the search with separate terms, there are several duplicate datasets that need to 

be eliminated. 

3). Metadata was added to all data by Mendeley and then checked for incomplete author names or 

missing journal sources, so that articles with inappropriate metadata were eliminated. 

After processing the articles, the results of the data selection can be seen in Table 3. 

 

Table 3. Filtered datasets for 2019 - 2023 

Number 
Number of Articles after 

merging 

Number of Articles after duplicate 

elimination 

Number of Articles after data 

completeness evaluation 

1.  2.620 2.255 2203 

 

Table 4. Scopus all year datasets 

Number Keywords (search terms) 

Number of 

Articles after 

merging 

Number of Articles 

after duplicate 

elimination 

Number of Articles after 

data completeness 

evaluation 

1.  Emotion Recognition 200 200 200 

2.  

Multimodal Emotion, Recognition, 

Multimodal Physiological Signal, 

Multimodal Emotion Recognition 

Database 

600 511 511 

Total Articles 800 711 711 

 

RESULT AND DISCUSSION 

Significant Journal Publications 

Although the Publish or Perish search is limited to 200 articles per search, the number can be used to 

measure trends in article distribution. However, it can be seen in  Figure. 2 that ER publications peaked in 

1995-2010 while MER publications were rampant from 2010 until now. On the other hand,  Figure 3 shows 

that the number of ER citations also reached its peak, but the number of MER citations is still stable and 

tends not to peak. This shows that research on MER which is specific research from ER still has the potential 

to grow. 

 

 
Figure 2. “Multimodal emotion recognition” vs “emotion recognition” article over the years 

 



 

 

 

 

Scientific Journal of Informatics, Vol. 10, No. 2, May 2023 | 163 

 
 Figure 3. “Multimodal emotion recognition” vs “emotion recognition” citations over the years 

 

While the distribution of  Figure 4 shows the distribution of where the journal was published and it shows 

in detail the quality of the journal through the Schimago Journal Rank (SJR) value and Q categories (Q1-

Q4). 

 

 
 Figure 4. Journal publications and distribution of “multimodal emotion recognition” 

 
Table 5. Detail quality of journals  

Number Journal 
Number of 

Articles 
SJR QCategory 

Publication 

Type 

1.  IEEE Transactions on Affective Computing 95   Q1 Journals 

2.  IEEE Access 85   Q1 Journals 

3.  Sensors (Switzerland) 75   Q2 Journals 

4.  

ICASSP, IEEE International Conference on 

Acoustics, Speech and Signal Processing - 

Proceedings 

40 0,057638889   
Conferences and 

Proceedings 

5.  Multimedia Tools and Applications 37   Q1 Journals 

6.  Biomedical Signal Processing and Control 31   Q1 Journals 

7.  

Proceedings of the Annual Conference of the 

International Speech Communication 

Association, INTERSPEECH 

26 0,478472222   
Conferences and 

Proceedings 

8.  Information Fusion 22   Q1 Journals 

9.  Applied Sciences (Switzerland) 20   Q1 Journals 

10.  Frontiers in Psychology 18   Q1 Journals 

 

Most Active and Influential Researchers 

Based on the results of the article processing obtained, it is possible to identify 10 researchers who certainly 

make a significant contribution to the field of emotion recognition and, more specifically, to multimodal 

emotion recognition. Figure 5 shows the distribution of names and their article contributions either as first 
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authors or non-first authors. The ten names are Bjorn W. Schuller, Maja Pantic, Shrikanth Shri Narayanan, 

Bao Liang Lu, Jianhua Tao, Florian Eyben, Erik Cambria, Zixing Zhang, Emily Mower Provost and Nicu 

Sebe. 

 

 
Figure 5. Influential researchers and a number of studies 

 

Research Topic in Multimodal Emotion Recognition 

Multimodal emotion recognition is claimed to improve the quality of emotion recognition, because each 

modality has its own characteristics and can complement each other [14], [15]. Based on the analysis that 

has been done, the research focuses on 2 main topics as follows: 

1) Exploration of Recognized object context divided into by ethnicity, gender, age, health condition 

by situation at the time of data collection. 

2) Exploration of Recognition Sources/Modalities consisting of electrical signals, wearable device, 

audio/speech, Text, and Video/Image. 

 

Females can discern anger and "'distinguish'" emotions better, so the emotions displayed by females are 

more accurate than those displayed by males [16]–[25]. Other studies show different results when combined 

with age, girls, young women, adult women and so on [18], [19], [26], [27]. These age and gender 

parameters will greatly affect the validation of emotions being learned and analyzed. 

 

Health parameters have also emerged as a factor to consider in emotion recognition. Most emotion 

recognition research explores diseases that attack the brain as a possible factor to consider, such as autism 

[18], [28]–[36], stress [37]–[48], Alzheimer's, Parkinson's [49], [50], Huntington’s, and schizophrenia [31], 

[51]–[53]. It is mentioned that Huntington's disease will interfere with the recognition of negative emotions, 

especially anger, disgust, and fear [54]–[56]. Patients with affective decline who attack their brains best 

identify their emotions through physiological signals, including electroencephalography (EEG), 

electrocardiogram (ECG), photoplethysmography (PPG), and respiratory (RA), to classify PD and healthy 

control (HC) [57]. This is in line with other research that showed weaknesses in facial emotion recognition 

in these patients due to impairments in facial emotion mimicking [58]. 

 

The context in which emotion recognition data is collected is another factor that should be considered in 

validating emotion recognition. Unfortunately, there are still few studies that explore this side. There are at 

least 3 situations studied including job interviews, assessment interviews and forensics interviews/ 

interrogations as well as other interviews with specific purposes [59]–[64]. Another challenge in this field 

is the attempt to circumvent emotions during certain situations, especially interviews [65]. 

 

Based on the exploration of the objects to be recognized for emotions, it shows that most of the focus is on 

the health background of the object, then age, gender, a small proportion discusses the situation when the 

data was taken and very little is related to ethnic background. The composition of the research is shown in 

Figure 6. 
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Figure 6. Object base research 

 

To capture the source of emotions reflected by objects has also been explored, one of which is through 

electrical signals reflected by the body. Some research explores electrical signals in the brain/ 

electroencephalography (EEG) [50], [66]–[143], in the heart/electrocardiogram (ECG) [88], [144]–[147], 

in skin tissue / Photoplethysmography (PPG) [145], [148], [149] and respiratory tract [150], [151]. These 

electrical signals are effective for recognizing human emotions. So, although the signals captured are the 

same, the researchers explored tools to capture these signals in simpler tools by utilizing simple and 

wearable tools on the body. These tools are developed through modification of virtual reality headsets [99], 

[152], wrist/bracelet [153]–[156], chip [157], [158], flexible printed circuit board [159], [160] and textile 

[161]. These various wearable device developments show that emotion recognition research has a strong 

market and benefits. Many of these devices are being developed for mass production, so the pace of research 

in this field will certainly accelerate. 

 

The computational side of exploration through Audio/Speech, Text and Video/Image is also very much 

developed. With speech datasets, researchers have analyzed the signal spectrogram [162]–[164] or the 

conversation transcript [15], [165].  Of course, the modalities obtained are different from the features that 

can be analyzed. Speech signals are more feature-rich than conversation transcripts (text [166]). Various 

information such as prosodic, spectral, voice quality, and features based on Teager energy operator can be 

analyzed from speech signals [167]. Classical classification methods are used (Decision Tree, and SVM 

[168]–[171]) or deep learning (CNN, DNN, RNN) [40], [42], [73], [108], [112], [130], [172]–[188] and 

deep learning with enrichment [189]. 

 

Emotion recognition analysis features through video/image are not as many as speech. There are at least 

two groups categorized, namely faces and body gestures [190]. Faces are the most popular, even a layman 

with his experience of knowing objects is very likely to easily recognize the emotions of objects. This fact 

is the reason why emotion recognition research through faces has developed stronger than other modalities, 

this is in terms of the availability of data sets and the level of accuracy produced [191]. The Facial Action 

Coding System (FACS) was developed to describe the judgement of cues that are used in the facial cue 

judgement approach. The FACS is a classification system of human facial expressions. Its origins can be 

traced back to its original development by [192] and revised in [193]. The revised version outlines 32 

distinct facial muscle movements referred to as Action Units (AUs), as well as 14 supplementary Action 

Descriptors (ADs) which account for factors such as head position, gaze direction, and various actions 

including jaw thrust, blowing, and biting. 

 

Mind Map 

The comprehensive mind map depicted in Figure 7 illustrates the findings of the systematic literature review 

conducted on Multimodal Emotion Recognition. Mind maps are a useful tool for examining the connections 

between concepts and components of an argument, as well as for generating solutions to problems. By 

presenting a holistic view of all pertinent issues and analyzing options in the context of the larger picture, 
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mind maps offer a new perspective on information [194]. They also facilitate the logical organization of 

data and the incorporation of new knowledge. In this particular study, the mind map serves as a visual 

representation of the outcomes of the systematic literature review on Multimodal Emotion Recognition. 

 

 
 Figure 7. Mind map of the SLR on multimodal emotion recognition 

 

Future Challenges and Research Opportunities 

Modalities exploration: According to Figure 7, there are many modalities that can be tilled, but the 

distribution of investigation of each modality has not yet reached the maximum conclusion on emotion 

recognition, especially in relation to the context that is still widely explored and its contribution to the daily 

life. 

 

Dataset availability:  It is of high priority to improve datasets in this area. In relation to the small number 

of discussions, there is also a need for a variety of datasets based on modalities of influence. 

 

Interdisciplinary connection:  In this research, it was found that there are at least 7 fields of science 

involved, it would be very meaningful if there is a mutual agreement so that the contribution of each field 

of science can be aligned and support each other to produce a roadmap for the development of emotion 

recognition that is more advanced and useful. 

 

CONCLUSION 

This literature review aims to identify multimodal emotion recognition in depth and breadth by analyzing 

topics, trends, modalities, and other supporting sources discussed in research throughout the years and 

between 2010-2023. Based on the filtering analysis, a total of 14,533 articles were analyzed to achieve the 

goal. The conclusions generated in this literature review were conducted through a systematic method 

including Preparation, Implementation and Reporting. 

 

In general, the focus of MER research can be categorized into two issues, object background and emotion 

recognition sources or modalities. When looking at the background of the object, most 55% to support 

emotion recognition with a health background, especially brain function decline, 34% based on age, 10% 

by gender, 1% data collection situation and a small portion of less than 1% related to ethnic culture. 

Referring to the source of emotion recognition, research is distributed on electromagnetic signals, voice 

signals, text, photo/video and wearable device development. Based on the above results there are at least 7 

fields of science that discuss MER research, namely the fields of Health, Psychology, electronics, grammar, 

communication, socio-culture, and computing.  

 

MER research has the potential to develop further. There are still many areas that have received less 

attention, while the ecosystem that uses them has grown massively. Emotion recognition modalities are 

numerous and diverse, but research is still focused on validating the emotions of each modality, rather than 

exploring the strengths of each modality to improve the quality of recognition results. 
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