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Abstract. 

Purpose: Experimental studies are usually costly, time-consuming, and resource-intensive when it comes to 

investigating prospective corrosion inhibitor compounds. Machine learning (ML) based on the quantitative structure-

property relationship model (QSPR) has become a massive method for testing the effectiveness of chemical compounds 

as corrosion inhibitors. The main challenge in the ML method is to design a model that produces high prediction 

accuracy so that the properties of a material can be predicted accurately. In this study, we examine the performance of 

polynomial functions in the ML-based NuSVR algorithm in evaluating the regression dataset of corrosion inhibition 

efficiency of pyridine-quinoline compounds. 

Methods: Polynomial functions for NuSVR algorithm-based ML. 

Result: The outcomes demonstrate that the NuSVR model's prediction ability is greatly enhanced by the application of 

polynomial functions.  

Originality: The combination of polynomial functions and deep machine learning based NuSVR algorithms to increase 

the accuracy of predictive models. 
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INTRODUCTION 
In many different areas, including the economy, ecology, society, industry, security, and safety, corrosion 

results in significant losses [1]. Corrosion in materials is influenced by factors originating from the unique 

character of the material and the surrounding environment [2]. Inhibitor technology is the most simple, 

effective, and economical way to inhibit corrosion [3], [4]. The inhibitor compounds’ efficiency at 

preventing mass charge transfer and preventing corrosion will depend on their capacity to establish a 

protective layer on the metal surface [5]. 

 

Experimental methods for evaluating inhibition efficiency require a large amount of time and money [6]. 

Utilization of the DFT method is possible to determine the electronic structure and various molecular 

properties more quickly and accurately [7]. Machine learning techniques based on the Quantitative 

Structure-Property Relationship (QSPR) or Quantitative Structure-Activity Relationship (QSAR) model is 

frequently used to assess potential inhibitor candidates because molecular properties can be quantified and 

are directly related to the chemical structure of compounds [8], [9]. Several QSPR studies that have been 

carried out have shown a good synergy between theoretical and experimental studies on the relationship 

between molecular structure and corrosion inhibition efficiency (IE) of inhibitors of N-heterocycles 

compounds [10]. 

 

Ser et al. [11] conducted a study developing a QSPR model to forecast molecules with 20 quantum chemical 

descriptors for pyridine and quinoline derivatives by combining linear GA-PLS and non-linear GA-ANN 

methods. The GA-PLS model showed an RMSE result of 14.9%, while the GA-ANN model showed an 

RMSE result of 8.8%. The ANN model was used to predict the corrosion inhibition potential of thiophene 
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derivative compounds, which resulted in an R2 value of 0.96. Zhao et al. [12] used the SVM model to 

evaluate the performance of the amino acid inhibitors and reported RMSE and R2 values of 1.48% and 0.97, 

respectively. Liu et al. [13] also used the SVM model to evaluate benzimidazole derivatives as corrosion 

inhibitors. The results show an RMSE value of around 4.45%. MLR and ANN models were used to evaluate 

the derivatives of pyridazine compounds by Quadri et al. [14]. The results show that the ANN model is 

more optimal (RMSE = 10.56%). In a separate study, Quadri et al. [15] also developed OLS and ANN 

models to predict quinoxaline derivatives. The result is that the ANN model shows better predictions 

(RMSE = 5.42%). Anadebe et al. [1] reported that the performance of the ANFIS model (R2 = 1.37; RMSE 

= 0.99%) was better than the ANN model (R2 = 0.91; RMSE = 4.35%) in evaluating expired salbutamol as 

an inhibitor. In addition, a recent report also evaluated expired commercial drugs as inhibitors using the 

ARX model with an RMSE value of 7.03% [16]. 

 

In general, machine learning-based studies are used to obtain predictive models that have high 

accuracy[17]–[20]. In this work, we examine the performance of polynomial functions to improve the 

predictive performance of the ML-based NuSVR algorithm in evaluating the inhibition efficiency of 

pyridine-quinoline anticorrosive compounds. 

 

METHODS 

Dataset and Descriptor 

In this work, we used published datasets from our references research [11], [21], [22]. This regression 

dataset is pyridines-quinoline derivatives that have 41 derivatives compounds and 20 quantum chemical 

descriptors. The quantum chemical descriptors are used as the features to find the best QSPR model to 

evaluate the corrosion inhibitor efficiency. In this study, the quantum chemical descriptors used include 

HOMO and LUMO energy, dipole moment, electron affinity, electronegativity, global hardness, ionization 

potential, electrophilicity, electron donor capacity, polarizability, a fraction of electrons transferred, 

electron acceptor capacity, global softness, energy gap, NBO atomic charge, Van der Waals volume, 

hydrophobicity, solvent accessible surface area, Van der Walls surface area, and adsorption energy. 

 

While the LUMO is the electron acceptor, the HOMO explains the capability of the inhibitor molecule to 

transfer electrons [23]. Gap energy demonstrates the degree to which the metal surface can adsorb inhibitor 

molecules [24]. Ionization potential, which is used to gauge an atom's or molecule's reactivity, is 

characterized as the quantity of energy required to release an atom's outermost electron. The energy required 

to attract one mole of electrons is known as electron affinity [25] [26]. Potential inhibitor compounds to 

draw electrons such that equilibrium of electrons is reached is related to electronegativity [27]. Global 

softness reveals a molecule's ability to accept charges, whereas global hardness shows a molecule's 

resistance to charge transfer. The dipole moment explains how molecules can move [28]. The polarization 

of the charge surrounding the molecule has a significant impact considering that physisorption and 

chemisorption are connected due to the metal surface's electrical contact [29]. A molecule's ability to alter 

the electron density and the distribution of electron density surrounding it are two aspects of molecular 

polarizability [30]. 

 

A molecule's capacity to absorb electrons is demonstrated by its electrophilicity. While electron acceptor 

capacity explains molecules' propensity to accept charges, molecules' inclination to donate charges is 

explained by their capacity as electron donors. How many electrons are flowing from the inhibitor 

molecules to the atoms on the metal surface is known as the proportion of electrons transferred [31]. The 

examination of interacting charges known as the natural bonding orbital can be utilized to determine the 

nature and magnitude of the atomic charge [32]. The molecule’s capacity to be created by using a 

hydrophobic mechanism, an adsorbed layer is referred to as hydrophobicity. The molecule’s ability to 

restrict the availability of corrosive chemicals on the metal exterior is measured using molecular surface 

area, molecular volume, and solvent-accessible surface area parameters [33]. In general, the interaction 

between inhibitor molecules and metal surfaces is connected to the mechanism of corrosion inhibition. 

Chemisorption and physisorption are two ways in which inhibitor compounds can become absorbed on the 

surface of metals. Because of this, adsorption energy and binding energy are important molecule descriptors 

[34] [35]. 
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Model Development 

To assess the effectiveness of pyridine-quinoline derivatives' corrosion inhibition, we use polynomial 

functions in conjunction with the NuSVR method. The default values for all further settings and parameters 

are those from Sci-kit Learn release 0.23.2 [36]. A ratio of 70:30 separates the dataset into training and test 

sets [37]. To prevent issues with the sensitivity of specific characteristics to the anticipated results, 

normalization is done on the training and testing datasets during the preprocessing stage [38]. In Figure 1, 

the specifics of the ML model we employ are shown. We evaluate the NuSVR model's performance both 

before and after the inclusion of polynomial functions. 

 

Model Validation 

Utilizing cross-validation techniques, such as Leave-One-Out (LOO) method, internal validation is carried 

out using a subset of the data for validation and the remaining portion for training [39]. The model 

performance on the training and testing sets is measured using the RMSE metric, which can be seen in 

Figure 2 [40]. Good model performance is indicated by the smallest RMSE value [41]. 

Figure 1. Model development 

 

 
Figure 2. Model validation 
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RESULTS AND DISCUSSIONS 

Optimization of polynomial functions in the NuSVR model is carried out by using boosting techniques to 

improve prediction performance. The predicted performance of the model is presented in Table 1. The 

addition of the polynomial function can improve the prediction performance of the NuSVR algorithm based 

on the RMSE value. 

 

This result is also confirmed through the visualization of the data points in Figure 3. It can be observed that 

the data points (blue color) on the NuSVR-polynomial ensemble model tend to be closer to the prediction 

line than the data points (red color) on the NuSVR model alone. In addition, the NuSVR model with the 

addition of a polynomial function shows a plot of the predicted inhibition efficiency (IE) values that are 

closer to the experimental data (Figure 4). This result proves that polynomial functions can help improve 

the predictive performance of the NuSVR model in this study. 

 

Table 1. Comparison of the model performance before and after adding polynomial function 
Model RMSE 

Training Testing 

NuSVR 18.96 7.41 

NuSVR + Polynomial 10.16 3.87 

 

 
Figure 3. Scatter plot of model performance before and after adding polynomial function 
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Figure 4. Comparison of experimental, NuSVR, and NuSVR+Polynomial on the inhibition efficiency 

value before and after adding polynomial function  

 

CONCLUSION 

We have developed a QSPR model using polynomial functions to improve the predictive performance of 

the NuSVR model in evaluating the inhibition efficiency of pyridine-quinoline derivatives as corrosion 

inhibitors. The result is that the addition of polynomial functions can improve the prediction performance 

of the NuSVR model. This technique provides insight into designing anti-corrosion materials based on 

machine learning. 
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