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Abstract. 

Purpose: This research aimed to detect meningioma, glioma, and pituitary brain tumors using the YOLOv8 architecture 

and data augmentations. 

Methods: This research employed the YOLOv8 architecture with data augmentation techniques to detect meningioma, 

glioma, and pituitary brain tumors. The study collected a dataset of T1-weighted contrast-enhanced images. The dataset 

used for training, validation, and testing. Preprocessing and augmentation applied to enhance the training data.  

Result: After applying data augmentation techniques, the performance of all tumor types improves significantly. 

Meningioma, Glioma, and Pituitary tumors demonstrate increased Precision, Recall, and mAP50 scores compared to 

the results before augmentation. The findings highlight the effectiveness of the proposed method in enhancing the 

model's ability to accurately detect brain tumors in MRI scans. The research conducted both with and without 

augmentation followed a similar procedure: data collection was first undertaken, followed by preprocessing and with 

or without augmentation. Subsequently, the collected data was partitioned into training and validation subsets for 

training with the YOLOv8 architecture. Finally, the model's performance was evaluated through testing to assess its 

effectiveness in detecting brain tumors. 

Novelty: The novelty of this research lies in the YOLOv8 architecture and data augmentation techniques for MRI brain 

tumor detection. The study contributes to the existing knowledge by demonstrating the effectiveness of deep learning-

based approaches in automating the detection process and improving the model's performance. By combining YOLOv8 

with data augmentation, the proposed method enhances the model's accuracy and efficiency. The research findings 

emphasize the potential of this approach in facilitating early diagnosis and treatment planning, thereby improving 

patient care in the context of brain tumor detection. 
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INTRODUCTION 
Brain tumors occur due to the emergence of uncontrolled and massive growth of abnormal cells. Tumors 

develop when there is uncontrolled cell division in the brain, leading to the formation of clusters of 

abnormal cells within the organ. These clusters can affect the normal brain function and destroy healthy 

cells. In 2016, brain tumors became the leading cause of cancer-related deaths among children (ages 0-14) 

in the United States, ranking higher than leukemia [1]. Brain tumors, along with Central Nervous System 

(CNS) tumors, are the third most common cancers among adolescents (ages 15-39). 

 

Frequently occurring brain tumors often require medical services that have a basic understanding of 

diagnosis and management [2]. Diagnosis is typically performed by experts through various methods, 

including medical imaging such as Magnetic Resonance Imaging (MRI). MRI is known as one of the most 

accurate medical imaging techniques used for various diagnostic tasks, including brain tumor detection. It 

applies a biomarker-based neuroimaging technique utilizing magnetic field gradient to provide anatomical 

and physiological information for diagnosis [3]. MRI imaging can display the brain's anatomical structures 

and assist experts in detecting tumors. 
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Currently, most tumor detection tasks rely on manual assessment by radiologists or pathologists, which can 

be time-consuming. Manual detection heavily relies on the level of expertise and experience to provide 

reliable and accurate results. Therefore, accurate and reliable detection is highly needed in the field of 

medicine for diagnosing brain tumors. Deep learning-based detection has proven to be highly effective in 

addressing this issue. 

 

Deep learning utilizes various robust methods to achieve high levels of accuracy. Different approaches and 

transfer learning techniques are implemented to maximize results. Convolutional Neural Networks (CNNs) 

have proven to be reliable and popular for object detection tasks, achieving comparable results to other 

methods. Detection of brain tumors using CNNs has been intensively studied by researchers in recent years, 

employing different architectures such as YOLO (You Only Look Once) with various versions. Some of 

these studies include the use of YOLOv3 [4], YOLOv4 [5], and YOLOv5 [6] architectures for brain tumor 

detection. These approaches have demonstrated their capability to accurately detect brain tumors. While 

these models exhibit promising performance, the pursuit of enhancement propels the evolution to newer 

iterations like YOLOv8. YOLO has evolved from its original version to newer versions, including YOLOv8 

[7].This dynamic progression underscores the constant drive for improved detection methodologies. 

 

Therefore, the challenge at hand is brain tumor detection using deep learning techniques, which can save 

time in diagnosing tumor types and reduce the risk of misdiagnosis. This research focuses on brain tumor 

detection using the Convolutional Neural Network (CNN) method with the YOLOv8 architecture. 

 

METHODS 

This research aims to detect meningioma, glioma, and pituitary brain tumors using the YOLOv8 

architecture based on data augmentations. The results obtained will be analyzed and evaluated. The research 

stages to achieve the final results of this study are outlined in the research framework shown in Figure 1. 

 

 
   (a)     (b) 

Figure 1. Research framework without augmentation (a) and with augmentation (b) 

 

Data Collection 

Data is the most crucial factor in methods such as artificial intelligence and machine learning. This is 

because data serves as the foundation for learning and adapting to problems in these methods. Training data 

is carefully selected from a dataset that represents the problem space in a homogeneous manner. The dataset 

contains a diverse set of relevant examples that are related to the problem at hand. By utilizing the right 

data, AI and machine learning models can learn, recognize patterns, and make accurate decisions [8]. 

Moreover, the selection of representative and homogeneous training data is vital to prevent bias and ensure 

good generalization to unseen data. In essence, data plays a fundamental role in the successful 

implementation of AI and machine learning methods for solving complex problems. 

 

The first step in this research is data collection. Data collected form Jung Cheng [9] contains 3064 T1-

weighted contrast-inhanced images with three kinds of brain tumor. The three types of brain tumor are 

meningioma, glioma, and pituitary.  

Table 1. Dataset 

Tumor Type Training Validation Testing 

Meningioma 496 141 71 

Glioma 998 285 143 

Pituitary 651 186 83 
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The table provides information on the distribution of data for different tumor types across the training, 

validation, and testing sets. The dataset is divided into three tumor types: Meningioma, Glioma, and 

Pituitary. For Meningioma, there are 496 images in the training set, 141 images in the validation set, and 

71 images in the testing set. For Glioma, there are 998 images in the training set, 285 images in the 

validation set, and 143 images in the testing set. For Pituitary, there are 651 images in the training set, 186 

images in the validation set, and 83 images in the testing set. These numbers indicate the number of images 

available for each tumor type in each respective dataset split, providing an overview of the data distribution 

for training, validation, and testing purposes. 

 

Data Preprocessing 

The obtained data still needs to be processed before it is ready for use. Preprocessing techniques are needed 

for data normalization and the elimination of redundant data within the dataset to make it ready for use. 

This preprocessing stage involves data conversion, which converts the data format from .mat to .jpg to 

proceed to the next stage. To facilitate the annotation process, we leveraged Roboflow [10], which required 

significant time and effort from our project team. The data was processed and labeled so that it can be 

understood and learned. The annotated objects are the identified tumor areas. An example of an annotated 

image is shown in Figure 2. 

 

   

Figure 2. Meningioma, glioma, and pituitary tumor image anotation  

 

Data Augmentation 

Data augmentation is a crucial technique in image processing to increase the diversity of training data and 

enhance the generalization ability of machine learning models. In the context of this study, various 

augmentation operations were applied to the images. Augmentation techniques are carried out depend on 

the implementation within the augmentation tool, such as Roboflow. The tool would apply these 

transformations to original images, generating multiple variations for each image based on the defined 

augmentation factors and settings. These operations included describe in Table 2. 

 

Table 2. Data augmentation 

Technique Applied 

Flip Horizontal 

90° Rotate Clockwise, Counter-Clockwise 

Crop 0% Minimum Zoom, 20% Maximum Zoom 

Rotation Between -15° and +15° 

Shear ±15° Horizontal, ±15° Vertical 

Grayscale Apply to 25% of images 

Brightness Between -40% and +40% 

Exposure Between -25% and +25% 

Blur Up to 2.5px 

Noise Up to 10% of pixels 

 

By applying these data augmentation techniques, the dataset was augmented with diverse variations of the 

original images, resulting in a larger and more diverse training set [11]. 

 

The number of data used for training after the augmentation process varies based on the original dataset 

size, the types of augmentation techniques, and the extent of augmentation. The total augmented dataset 

includes the original images along with the newly generated augmented images. Consequently, the size of 

the training dataset grows to encompass the original dataset and the diverse set of augmented variations. 
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YOLOv8 

YOLO, as a one-stage object detection algorithm with high computational efficiency, has become a 

prominent approach in the field [12]. In the realm of deep learning, YOLO has gained popularity due to its 

robustness, validity, and rapid detection capabilities [13].The advantages of the YOLO algorithm include 

its speed, ease of configuration, open-source nature, compatibility with various frameworks and libraries, 

and high accuracy. Over the past few years, the YOLO [14] [15] algorithm has undergone several iterations, 

including YOLOv2 [16], YOLOv3 [17],YOLOv4 [18], YOLOv5 [19], YOLOv6 [20], and YOLOv7 [21]. 

These iterations represent the evolution and improvement of the YOLO algorithm over time. 

 

YOLOv8 [19]. capabilities and improvements in a computer vision model used for tasks such as object 

detection, classification, and segmentation. It mentions that YOLOv8 is easy to use and can be trained on 

large datasets. The architecture of YOLOv8 includes different scales of feature maps and utilizes structures 

like B1-B5, P3-P5, and N4-N5 in the backbone, FPN, and PAN [22]. 

 

The enhancements introduced in YOLOv8 compared to previous versions. These include the adoption of 

Feature Pyramid Network (FPN) and Path Aggregation Network (PAN) as part of the neural network 

architecture, as well as the development of a new labeling tool to simplify the annotation process [23]. 

 

 
Figure 3. YOLOv8 architecture 

 

The components of YOLOv8, such as the backbone and neck. The Backbone component of YOLOv8 is 

fundamentally similar to YOLOv5 [23]. The backbone consists of modules like C2f and SPPF, which 

extract features and ensure accuracy at different scales. The neck module incorporates feature fusion using 

PAN-FPN and incorporates the idea of separating the head for improved accuracy. Additionally, the C2f 

module enhances detection accuracy by combining high-level features with contextual information [24]. At 

the end of the backbone, the SPPF module is still utilized in YOLOv8 to extract features through three 

pooling operations, aiming to enhance the network's receptive field [25]. 

 

SPPF is a element in YOLOv8's architecture. It uses pooling operations to extract features across various 

scales, enhancing the model's ability to capture context and spatial information effectively. SPPF is 

employed at the end of the backbone, improving the receptive field of the network. By aggregating 

information from different scales, SPPF ensures that YOLOv8 can accurately detect objects of varying sizes 

and complexities. 

 

The C2f module involves dividing the feature maps of the base layer into two parts, merging them 

hierarchically, and using two convolutions. This approach optimizes computation by reducing gradient 

repetition and enhances the model's feature extraction capability. The C2f module plays a significant role 

in YOLOv8's backbone and contributes to its overall accuracy. 

 

CBS, which forms the backbone of YOLOv8, employs cross-stage hierarchy by splitting and merging 

feature maps, improving gradient flow optimization. This innovative approach reduces computational 

burden while maintaining or enhancing accuracy. YOLOv8 integrates CBS-inspired C2f modules, 

enhancing the performance of its backbone and driving efficient feature extraction. 

 

Performance 

From the trained model, validation is performed using performance metrics based on the confusion matrix. 

In the confusion matrix, true positive refers to the model predicting a label correctly and matching the 

ground truth. False positive indicates the model predicting a label that is not part of the ground truth. True 
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negative means the model not predicting a label and it is not part of the ground truth. False negative signifies 

the model not predicting a label, but it is actually part of the ground truth. namely precision, recall, and 

mAP (mean Average Precision). 

 

Precision is the measure of accuracy between user requests and system responses. It indicates the percentage 

of correct predictions among all predictions. Precision is used to assess the accuracy of the model being 

used. Recall is the ratio of the number of true positives to the total number of objects. For example, if there 

are 100 trees in an image and the model detects 75 trees, the recall would be 75%. Mean Average Precision 

(mAP) is the average of the Average Precision (AP) for each class. mAP is calculated by finding the AP 

for each class and averaging them across all classes. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
   (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (2) 

𝑚𝐴𝑃 =  
1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=1  (3) 

 

RESULT AND DISCUSSION 
The results of evaluating the performance of the YOLOv8 model, which has been implemented based on 

metrics performance such as precision, recall, and mAP, are analyzed for the detection of YOLOv7. The 

detection results from these models will be analyzed to obtain the best outcomes in detecting brain tumors, 

specifically meningioma, glioma, and pituitary tumors. 

 

YOLOv8 offers five scaled versions: YOLOv8n (nano), YOLOv8s (small), YOLOv8m (medium), 

YOLOv8l (large), and YOLOv8x (extra large). These versions vary in terms of model size and complexity. 

This research use YOLOv8s with hyperparameter configuration here is an input size of 640 x 640, 100 

epochs, and batch size 8. The configuration of model is described in Table 3. 

 

Table 3. Hyperparameter 

Configuration Value 

Model YOLOv8s 

Size 640x640 
Epoch 100 

Batch 8 

 

Before Augmentation 

The model was applied to the unaugmented data, and the training results are illustrated in Figure 4. The 

diagram depicts the values per epoch for box_loss, cls_loss, dfl_loss, precision, and recall (both train and 

validation). The box_loss represents the loss incurred in localizing the bounding boxes of the detected 

objects, while cls_loss reflects the loss associated with classifying the objects into different categories. The 

dfl_loss corresponds to the loss incurred in refining the predicted bounding boxes. 

 

 
Figure 4. Results on training before augmentation 
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Table 4. Results on validation dataset before augmentation 

Tumor Type Precision Recall mAP50 mAP50-95 

Meningioma 0,956 0,951 0,98 0,849 

Glioma 0,866 0,816 0,866 0,596 

Pituitary 0,956 0,939 0,97 0,773 

All 0,926 0,902 0,938 0,739 

 

Table 4 presents the results on the validation dataset before augmentation. It shows the performance metrics 

for different tumor types, including Precision, Recall, mAP50 (mean Average Precision at IoU threshold 

0.50), and mAP50-95 (mean Average Precision from IoU threshold 0.50 to 0.95). For Meningioma tumors, 

the Precision is 0.956, the Recall is 0.951, the mAP50 is 0.98, and the mAP50-95 is 0.849. For Glioma 

tumors, the Precision is 0.866, the Recall is 0.816, the mAP50 is 0.866, and the mAP50-95 is 0.596. For 

Pituitary tumors, the Precision is 0.956, the Recall is 0.939, the mAP50 is 0.97, and the mAP50-95 is 0.773. 

The "All" category represents the overall performance across all tumor types. The Precision is 0.926, the 

Recall is 0.902, the mAP50 is 0.938, and the mAP50-95 is 0.739. Meningioma and Pituitary tumors 

achieved high Precision, Recall, and mAP50 scores. However, Glioma tumors had slightly lower 

performance scores compared to the other two tumor types. 

 

   
Figure 5. Results on testing dataset before augmentation  

 

After Augmentation 

The model was applied to the augmented data, and the training results are illustrated in Figure 6. By 

analyzing the values per epoch for box_loss, cls_loss, dfl_loss, precision, and recall (both train and 

validation), researchers can assess the training progress of the model. These metrics offer valuable 

information about the model's convergence, loss optimization, and performance in detecting and classifying 

objects accurately. 

 
Figure 6. Results on training after augmentation 

 

Table 5. Results on validation dataset after augmentation 

Tumor Type Precision Recall mAP50 mAP50-95 

Meningioma 0,985 0,95 0,986 0,841 

Glioma 0,891 0,831 0,894 0,599 

Pituitary 0,95 0,942 0,975 0,758 
All 0,942 0,908 0,952 0,733 

 



 

Scientific Journal of Informatics, Vol. 10, No. 3, Aug 2023 | 369 

Table 5 presents the results on the validation dataset after augmentation. For Meningioma tumors, the 

Precision is 0.985, the Recall is 0.95, the mAP50 is 0.986, and the mAP50-95 is 0.841. For Glioma tumors, 

the Precision is 0.891, the Recall is 0.831, the mAP50 is 0.894, and the mAP50-95 is 0.599. For Pituitary 

tumors, the Precision is 0.95, the Recall is 0.942, the mAP50 is 0.975, and the mAP50-95 is 0.758. Overall, 

performance all tumor types with the Precision is 0.942, the Recall is 0.908, the mAP50 is 0.952, and the 

mAP50-95 is 0.733. Meningioma, Glioma, and Pituitary tumors all showed increased Precision, Recall, 

and mAP50 scores compared to the results before augmentation. 

 

The augmentation techniques implemented effectively enhanced the model's ability. The changes in 

precision and recall stand out as significant contributors to the observed improvements. The results before 

augmentation compared to after augmentation reveals a consistent increase in precision across tumor types. 

Notably, the Meningioma, Glioma, and Pituitary categories all experienced noticeable precision 

enhancements. Furthermore, the recall values after augmentation across different tumor types exhibit 

meaningful improvements too. 

 

   
Figure 7. Results on testing dataset before augmentation  

 

CONCLUSION 

This paper presents a YOLOv8-based approach combined with data augmentation for MRI brain tumor 

detection. The results show that the proposed method achieves accurate and efficient detection of brain 

tumors in MRI scans. The integration of YOLOv8 and data augmentation techniques enhances the model's 

performance, improving its ability to handle diverse tumor variations and imaging conditions. The findings 

demonstrate the potential of deep learning-based approaches in automating brain tumor detection and 

facilitating early diagnosis and treatment planning for improved patient care. Future work may involve 

further optimization and validation of the proposed method using larger datasets and exploring other data 

pre-processing. 
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