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Abstract. 

Purpose: This study is driven by a two-fold objective. Firstly, it seeks to optimize the Support Vector Machine (SVM) 

algorithms in machine learning, comprehensively evaluating diverse SVM kernel variants to enhance their versatility 

and applicability across various domains, which is beyond the healthcare sector. Secondly, in the context of general 

health diagnosis, it aims to assess the suitability of SVM kernels for achieving precision in predictive modeling. The 

choice of SVM is rooted in its effectiveness, proven in classification and regression within data mining. SVMs excel 

in high-dimensional problem classification, demonstrating superior accuracy, making them invaluable in refining 

machine learning methodologies and advancing diagnostic systems, promising implications for healthcare and beyond. 

The chosen SVM model, distinguished by its exceptional performance, is then implemented in real-world applications, 

particularly in wireless, non-invasive healthcare devices. This deployment signifies a substantial stride toward 

advancing healthcare practices and holds promising implications for various fields. 

Methods: Data for this study was collected from publicly accessible datasets on Kaggle, encompassing a 

comprehensive array of general health-related information. This dataset, comprised of clinical data and vital signs data, 

underwent meticulous preprocessing, such as data cleaning, feature extraction, and categorization of health status into 

‘healthy’ and ‘requiring further attention’. Subsequently, predictive models were constructed employing Support 

Vector Machine (SVM) algorithms with various kernel functions, such as Linear, RBF, Polynomial, and Sigmoid. They 

were trained and tested on the preprocessed dataset to assess their efficacy in general health diagnosis. Model 

performance was rigorously evaluated using established metrics, including accuracy, precision, recall, F-1 score, Area 

Under the Curve (AUC), Receiver Operating Characteristic (ROC) curve, and cross-validation. The selection of the 

most efficacious SVM kernel was governed by stringent adherence to industry standards and best practices, ensuring 

optimal integration into health diagnostic systems. The chosen model was tested using new datasets obtained from 

wireless non-invasive healthcare devices and the pre-existing AHD application. Hyperparameter tuning was 

meticulously executed to maximize accuracy, ensuring the effectiveness of the evaluation process. 

Results: The results demonstrate that the Polynomial kernel was selected as the body health diagnostic model instead 

of the Linear, RBF, and Sigmoid kernels. This kernel has a training time of 0.8 seconds, a testing time of 0.1 seconds, 

accuracy scores of 97%, precision of 97%, recall of 97%, F-1 score of 97% for training metrics, and accuracy scores 

of 99%, precision of 99%, recall of 99%, and F-1 score of 99% for testing metrics. The accuracy of the polynomial 

kernel model decreased to 0.88 on new datasets; adjusting the hyperparameter C to C = 100 resulted in the highest 

accuracy of 0.945. 

Novelty: This study introduces a pioneering approach by rigorously optimizing Support Vector Machine (SVM) 

algorithms, notably the innovative application of the Polynomial kernel in general health diagnosis. Unlike traditional 

kernels, the Polynomial kernel exhibited exceptional accuracy (up to 99%) and precision. Furthermore, the study’s 

unique methodology, combining industry standards and meticulous hyperparameter tuning, ensures seamless 

integration into real-world healthcare systems. The deployment of this optimized model in wireless non-invasive 

healthcare devices signifies a groundbreaking advancement, highlighting a novel synthesis of theoretical innovation 

and practical implementation in machine learning for healthcare. 
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Machine learning is the subfield of AI research [1]. A good machine learning model should generalize well 

from training to test data, referring to the capacity of the model to adapt its learnings to new data [2] that 

can be determined through specific performance evaluation [3]. Machine learning with high performance 

on the system can be used as rapid, low-cost, and on a large scale [1]. The problem of medical practitioner 

shortages and increased national health expenditure can be resolved by integrating healthcare with machine 

learning (ML), yielding an intelligent healthcare system [1].  

 

The algorithms for machine learning include unsupervised, supervised, and reinforced learning [4]–[6]. 

Supervised learning methods encompass a range of models, such as Support Vector Machine (SVM), Linear 

Regression, K-Nearest Neighbor (KNN), Decision Tree, Naive Bayes, and Artificial Neural Network [1]. 

A popular algorithm for data classification is a support vector machine [7]. Support Vector Machine has 

been introduced as an effective instrument in data mining, specifically classification and regression [8]. 

High-dimensional data is one of the issues that plague the field of clarification [9]. In general, the data is 

commonly depicted in a space with many dimensions, often consisting of hundreds of thousands of words. 

It is important to note that a particular data point may only occupy a subset of the overall dimensions [10]. 

Support vector machines (SVMs) have demonstrated successful applications in the classification of high-

dimensional problems across various domains, including remote sensing, web page classification, 

microarray analysis, etc. [11]. It has also been demonstrated that this algorithm is more effective at 

obtaining high accuracy. SVMs gain strength by identifying the optimal classifier with the most significant 

margin between instances of distinct classes [10]. It does not require additional calculations from feature 

selection or dimension reduction methods [11]. This is possible because SVM employs its own kernel [12].  

 

One of the major challenges users experience when using SVM is selecting the proper kernel function based 

on the dataset’s attributes to be analyzed [8]. In SVM classifiers, Linear, Polynomial, RBF, and Sigmoid 

kernels are frequently employed [8], [13]. Each of these options possesses both advantages and cons [14]. 

In relation to the quantity of data in the employed datasets, the Linear kernel’s attributes showed the best 

performance [13]. Kernel Polynomials were efficient for high-resolution data prediction and time 

complexity. For intermediate-resolution kernels, RBF predicted better [15]. In this case, kernel performance 

depends on characteristics, instances, classes, missing values, and dataset type [8]. 

 

Health is crucial for humans to carry out daily activities [16]. SVM algorithms are utilized in numerous 

healthcare applications. This work centers on medical data, and it has been demonstrated that Support 

Vector Machines (SVM) exhibit satisfactory performance in classifying various disease types. According 

to Ray et al. [1], the SVM algorithm has the highest accuracy of 92.51% in diagnosing chronic kidney 

disease. On the Indian Pima population model, Kaur et al. [17] employed different algorithms for diabetes 

prediction, including SVM-Linear, RBF-SVM, KNN, ANN, and MDR. Compared to other models, the 

SVM-Linear model has the highest accuracy of 0.89 and precision of 0.88. Using the algorithms Decision 

Tree, Random Forest, SVM-LR, and Naive Bayes, Bashir et al. [18] developed a model for predicting 

cardiac disease. The results show that the SVM-LR algorithm has a maximum accuracy of 84.85 percent. 

Uddin et al. [19] used supervised machine learning methods, such as SVM, decision trees, random forests, 

and naïve Bayes, KNN, and ANN, with SVM obtaining the second-highest accuracy beneath the random 

forest. Ayon et al. [20] conducted a comparative analysis of various artificial intelligence techniques to 

forecast the occurrence of coronary artery heart disease. This analysis was performed on two distinct 

datasets. In the context of the Cleveland dataset, the Support Vector Machine (SVM) algorithm 

demonstrated a notable accuracy rate of 97.36%, surpassing the performance of alternative methods. 

 

Despite the numerous smart healthcare innovations, machine learning applications exist in two areas of 

disease management: fatal diseases (cardiovascular diseases) and chronic diseases (chronic kidney diseases 

and diabetes) [1]. Clinical data and vital signs are pivotal in establishing continuous communication 

between doctors and patients, enabling the early detection of chronic disease and facilitating predictive data 

analysis [21]. Understanding the patient’s general health status empowers healthcare providers to identify 

potential health issues promptly, allowing for early interventions and disease prevention [22]. The focus on 

general health in clinical data takes into account all factors influencing patient well-being, facilitating the 

development of holistic and personalized care plans. With the WHO projecting an increase in individuals 

experiencing better health and well-being in 2023, emphasizing general health within clinical data becomes 

paramount. This approach ensures that healthcare addresses existing chronic diseases and supports the 

overall well-being of patients, paving the way for a healthier future. 
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In this study, the primary research objective centers on the domain of general body health diagnosis. 

Notably, it aims to establish that Support Vector Machine (SVM) algorithms exhibit superior performance 

compared to other algorithms, as discussed in prior studies. It is crucial to emphasize that while SVM 

algorithms have demonstrated exceptional performance in detecting chronic illnesses, their application has 

historically been confined to such cases. Recognizing the potential for enhanced versatility and applicability 

across diverse domains beyond the healthcare sector, the research endeavors to push the boundaries of SVM 

kernel performance. Specifically, within the context of general health diagnosis, the aspiration is to 

determine the suitability of SVM kernels for achieving precision in predictive modeling under real 

conditions, subject to rigorous evaluation and comparative analysis. The research aims to implement the 

chosen robust SVM kernel model for predictive modeling in healthcare, specifically comprising wireless 

non-invasive healthcare device information and clinical data input from the developed AHD application. 

 

METHODS 

This research used Python version 3.7 as the programming language for implementing the diagnostic 

general body health prediction model. The study leveraged several essential libraries and frameworks, 

including Pandas, Matplotlib, Seaborn, and Scikit-Learn, to facilitate data manipulation, visualization, and 

machine learning model development. These tools were thoughtfully selected to ensure compatibility and 

efficiency in the data analysis pipeline. The dataset for this evaluation, gathered from Kaggle, a reputable 

public web-based source, comprised 35394 data points and was meticulously partitioned into training and 

testing subsets at an 80:20 ratio. This partitioning resulted in 27895 data points allocated for training, used 

to measure training performance metrics, and 6974 for testing, employed to assess testing performance 

metrics. The evaluation of these SVM algorithms involved a thorough analysis using a diverse range of 

performance metrics. These metrics included training and testing times, accuracy, precision, recall, F1- 

score, Area Under the Curve (AUC), Receiver Operating Characteristic (ROC), and cross-validation. It is 

worth emphasizing that throughout the testing process, the parameter configurations for each kernel 

remained at their default settings.  

 

Ashmore [23] states that constructing machine learning involves four cycles: data processing, model 

learning, model verification, and model deployment. The methodology employed in this study is as follows: 

 

 
Figure 1. Research framework 

 

Data Collecting 

In the initial phase of the research framework, data collection served as a foundational step. In this stage, a 

comprehensive dataset was gathered from Kaggle, a reputable public web-based source. This dataset 

comprised a rich array of clinical data and vital signs records. Table 1 provides data set information: 
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Table 1. Dataset description 
No. of Instances 67376 

Number of Input Features 18 

Number of Output Classes 2 
Class Label 1-Healthy 

2-Not Healthy 

 

Feature Engineering 

The dataset underwent feature engineering, involving the removal of unnecessary instances. Table 2 

presents the description of the dataset after the feature engineering process.  

 

Table 2. Description of dataset features and labels 
 Feature Type Values 

(i) Gender Integer  Male (M) = 1; Female (F) 

= 0 
(ii) Sex Integer [17-65] 

(iii) Body height Integer [140-194] 

(iv) Body weight Integer [35-178] 
(v) Body temperature Integer [10-41] 

(vi) Systole Integer [15-179] 

(vii) Diastole Integer [40-109] 
(viii) Heart rate Integer [6-200] 

(ix) SPO2 Integer [8-100] 
(x) Blood sugar Integer [20-100] 

(ix) Body Health Diagnose Integer True (Healthy) = 1; False 

(Not Healthy) = 0 

 

This rigorous data collection phase laid the groundwork for subsequent analyses and the development of 

the diagnostic health prediction model, aligning with the principles of sound scientific investigation within 

the context of health research. 

 

Data Split 

After passing through this stage, the data was separated into training and testing data in an 8:2 ratio. This 

is due to the fact that the algorithm utilized is supervised learning. This means that the data is first taught 

to recognize patterns in the input data so that a classifier model for future predictions can be developed. In 

order to mitigate the issue of overfitting the training data, it is partitioned into distinct sets [24]. 27895 

training data and 6974 testing data were retrieved from the partition results. Furthermore, the parameter 

settings for each kernel employed in this testing were kept at their default configurations. 

 

Construct Model 

The learning algorithm utilizes the input data during the process of automated model building in order to 

identify and analyze patterns and relationships pertinent to achieving the desired learning objective. As 

previously elucidated, support vector machines (SVM) endeavor to construct a discriminative hyperplane 

that distinguishes between data points belonging to different classes. This often involves mapping the input 

data into a feature space of larger dimensions, which enhances the ability to separate the data points. The 

construct model is implemented in the environment. It is justifiable to compare alternative models with 

varying levels of complexity. This encompasses the competing model classes and alternate variants within 

the same model class to select a suitable prediction model for a specific task [25]. The SVM technique was 

used alongside several different kinds of kernels in this research [12]: 

 

Linear Kernel 

Linear kernels have identity mappings, meaning the input and feature spaces are equivalent. Linear SVMs 

are SVMs with Linear kernels. Mathematically, the Linear kernel is represented by equation (1) [26]: 

K(x1, x2) = x T 1 x2 ⇒ φ(x) = x      (1) 

 

RBF Kernel 

The Gaussian RBF kernel calculates the Euclidean distance between two landmarks with a free parameter 

using the Gaussian function [27]. The RBF-Kernel equation is as follows (Equation 2) [12]: 

K(x, x′) = exp (− γ||x − x′||2 )        (2) 
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Polynomial Kernel 

The kernel’s non-stationary characteristic renders it suitable for issues in which all training data is 

standardized, setting it apart from the Polynomial kernels [28]. The Polynomial-Kernel equation is 

represented by equation (3) [12]: 

K(x,y)- (xy + C)        (3) 

 

Sigmoid Kernel 

The kernel makes use of the Sigmoid function. The provided system, known as the hyperbolic tangent 

kernel technique, can be analogized to a two-layer neural network, namely a perceptron network [28]. 
Sigmoid kernels are less effective than RBF kernels. Still, they can be modified to behave like Gaussian 

RBF kernels, especially in two-dimensional problems with high-dimensional feature vectors or non-linear 

decision boundaries. The Sigmoid-Kernel equation  is represented by the following equation(4)[12]: 

K(x, y) = tanh(∝x T y + c)       (4) 

 

Performance Evaluation 

There are numerous criteria that can be used to evaluate the quality of a model. These characteristics include 

its performance, processing requirements, and interpretability. Performance-based metrics are used to 

evaluate a model based on how well it achieves the learning task’s specified objective. A number of various 

ratios of correct to incorrect predictions can be used to evaluate classification algorithms. Among these 

ratios are precision, accuracy, recall, and the F1-score [25], [29], training and testing time [30], AUC [24], 

ROC [29], and cross-validation [31]. 

 

RESULTS AND DISCUSSIONS 

The study comprehensively evaluated various Support Vector Machine (SVM) methods, including Linear, 

Radial Basis Function (RBF), Polynomial, and Sigmoid kernels. The dataset utilized for this evaluation 

comprised 35394 data points, meticulously partitioned into training and testing subsets at an 8:2 ratio. This 

partitioning resulted in 27895 data points allocated for training, used to measure training performance 

metrics, and 6974 for testing, employed to assess testing performance metrics. The evaluation of these SVM 

algorithms involved a thorough analysis using a diverse range of performance metrics. These metrics 

included training and testing times, accuracy, precision, recall, F1-score, Area Under the Curve (AUC), 

Receiver Operating Characteristic (ROC), and cross-validation. It is worth emphasizing that throughout the 

testing process, the parameter configurations for each kernel remained at their default settings. 

 

Within the realm of performance measurement activities, the study involved the assessment of training and 

testing times for algorithms. This was achieved through five iterative measurements to ensure a 

comprehensive evaluation of algorithmic efficiency. Notably, the research was conducted on a system 

powered by an Intel® Xeon® CPU@2.30GHz. The findings are presented in Table 3. 

 

Table 3.  Measurement of training and testing time 
Support Vector Machine Training Time 

(second) 
Testing Time (second) 

Linear Kernel 159.4 0.2 

Polynomial Kernel 0.8 0.1 
RBF Kernel 1.6 0.3 

Sigmoid Kernel 14.8 3.6 

 

Table 3 shows that the Linear kernel exhibits an anomaly at this time. This could be due to a number of 

factors, such as the scale of big data, which can lengthen the training period due to the increased number 

of matrix aggregation operations. In addition, the resource platform utilized by Google Colab has 

limitations. Compared to Polynomial kernels and RBF in the process of testing, the Sigmoid kernel requires 

the most effort. It is essential to underline that there is a significant difference between the Sigmoid kernel 

and other kernels. On the SVM kernel, Sigmoid functions entail more complicated mathematical operations, 

such as exponential functions and proliferation operations. Based on the time measurement results, it can 

be concluded that the Polynomial kernel has a similar time to the RBF due to the similar complexity of 

their tendencies. 
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Table 4. Training evaluation metrics 
Kernel Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Linear Kernel 95 95 95 95 

RBF Kernel 96 96 96 96 
Polynomial Kernel 97 97 97 97 

Sigmoid Kernel 74 74 74 74 

 

The average result for the Polynomial kernel is 97%, which signifies the model’s near-perfect classification 

of all samples within the entire dataset. The precision score of 0.97 demonstrates the model’s accurate 

identification of nearly all positive predictions. The recall score of 0.97 indicates minimal oversight of 

positive cases by the model, showcasing its exceptional ability to detect positive instances and recognize 

true positives. Furthermore, the F1-score of 0.97 provides a balanced representation of the model’s 

proficiency in accurately classifying positive cases (precision) and identifying genuine positive instances 

(recall). This superior accuracy aligns with SVM theory, emphasizing optimal classification through 

distinct class margin [10]. This could be due to a more complex model than the Linear or Sigmoid kernels. 

Polynomial kernel offers adjustable parameters to control mapping complexity, while the RBF kernel 

demonstrates the ability to handle highly complex data and excels in managing intricate and unstructured 

pattern [32]. Models with increasing levels of complexity can respond better to patterns and variability in 

training data. This can result in outstanding data training results and ideal numbers on the confusion matrix. 

 

Due to the limited weakness of models coping with complex non-linear relationships in data sets, the result 

of training evaluation metrics on the Linear kernel is smaller than the RBF and Polynomial kernels. The 

availability of additional features resulting from the transformation that the Linear kernel lacks can also 

activate the kernel’s inability to handle complex non-linear relationships. The score of 95% for all metric 

outcomes of the Linear kernel indicates that approximately 95% of all predictions made by the model are 

accurate. High consistency in accuracy, precision, and recall, as well as the F1-score equal to 95%, may 

indicate the classification model’s proficient overall performance. 

 

The score of 74% for accuracy, precision, recall, and F1-score indicates that the model has low accuracy 

and generates numerous classification errors. In this case, only about 74 percent of the model’s predictions 

are accurate. There is a significant difference between the Sigmoid kernel and the other three kernels in the 

training matrix training outcome. This is in accordance with Ghosh [12], observing that the Sigmoid kernel 

is comparatively less effective than RBF kernels. This is possible due to the “saturation” property of the 

Sigmoid kernel used by this kernel’s decision function at extreme values. A minor change in the input close 

to extreme values will produce very small changes in the output of the Sigmoid function, making it less 

sensitive to the extreme value. This means that models tend to make extremely accurate predictions. In 

addition, it may be more challenging to differentiate between classes in the case of classification. 

 

Table 5. Testing evaluation metrics  
Kernel Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Linear Kernel 99 99 99 99 

RBF Kernel 99 99 99 99 
Polynomial Kernel 99 99 99 99 

Sigmoid Kernel 72 72 72 72 

 

Table 5 shows that RBF and Polynomial kernels produced a fixed value of 99%, as the Linear kernel did. 

This demonstrates that the model can consistently distinguish between the classes present in the data. The 

Sigmoid kernel’s accuracy, precision, recall, and F1-score of 72% indicate that the model has a low level 

of precision and generates many classification errors. In other words, approximately 72% of model forecasts 

are accurate. This indicates that the model has trouble differentiating between the classes in, the data and, 

therefore, cannot make accurate predictions. 
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Figure 2. Comparison of AUC and curve ROC kernel SVM 

 
Due to their shared ROC and AUC values, both the blue, green, and dwarf curves accumulate. The ROC 

curve has a little deviation from the diagonal and an AUC of 0.99, which is identical. This demonstrates 

that Linear, RBF, and Polynomial models can accurately predict positive and negative classes. The model’s 

success in this regard illustrates its superiority over blue and green curves and dwarfs in predicting positive 

classes while avoiding errors in identifying negative ones. The red curve, also known as the Sigmoid kernel, 

tends to shift to the left until it reaches the diagonal (y=x). Even AUC values over the curve’s 0.5 influence, 

at 0.72. This indicates the model could be making incorrect predictions between the positive and negative 

categories. The RBF kernel’s cross-validation score of 0.991 is superior to that of the Linear kernel. This 

is because of the RBF kernel’s capacity to manage complex or non-linear data patterns. The maximum 

score for the Polynomial kernel is 0.992. This is because the model employs a Polynomial transformation, 

which allows it to capture non-linear relationships between features. This kernel has high stability and is 

resistant to change and variation. In line with the theoretical understanding that the sigmoid kernel is 

considered the least effective [33], the research findings corroborate this notion by revealing the smallest 

value achieved with the sigmoid kernel, i.e., 0.443. These kernels performed poorly when coping with 

intricate data patterns. The tendency of the Sigmoid function to “saturate” at extreme levels can impede the 

model’s ability to distinguish between positive and negative classes. Consequently, performance and 

robustness values may decline. 

 

Based on the comprehensive comparison of overall performance, the significant differences observed 

between the Sigmoid kernel and the other three kernels, as indicated by Ghosh [12], underscore the 

importance of these variations. The inherent ‘saturation’ property in the Sigmoid kernel’s decision function 

at extreme values reduces its sensitivity, resulting in highly accurate predictions yet potentially challenging 

class differentiations during classification. This observation emphasizes the necessity of understanding 

these subtle differences, providing valuable insights for kernel selection in SVM models. 

 

Implementation Model in Healthcare Devices 

In this study, the polynomial kernel SVM algorithm, which exhibited the best performance among the three 

kernels based on the aforementioned evaluation parameters, was tested for its accuracy using a new dataset. 

This dataset comprised wireless non-invasive healthcare device information and clinical data inputted from 

the AHD application developed [34]. For this experiment, the model was tested with a dataset containing 

200 records and six different values of the parameter C, which serves as a hyperparameter in the polynomial 

kernel. The following presents the comparative results: 

 

Table 7. Accuracy comparison based on variations of parameter C 
No. C Parameter Model Accuracy (%) New Dataset Accuracy (%) 

1. Not Found 96.5 88 

2. 0.01 94 86 
3. 0.1 95 86 

4. 1 96.5 88 

5. 10 97 92 
6. 100 97 94.5 
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Based on these results, the higher the value of parameter C, the better the accuracy of the model and the 

new data. This indicates that the polynomial kernel with a parameter setting of C=100 achieved the highest 

accuracy for new data, with a value of 0.945, while the model accuracy remained at 0.97. This model is the 

one implemented in the system. 

  

CONCLUSION 

Aligning with the outlined dual objectives, this study meticulously examined various SVM kernels for 

general body health diagnosis. In addition, it successfully implemented the chosen model in wireless non-

invasive healthcare devices by utilizing clinical data sourced from the developed AHD application. Among 

the kernels scrutinized, the Polynomial kernel emerged as the optimal choice, displaying consistently 

outstanding performance metrics, including a training time of 0.8 seconds, a testing time of 0.1 seconds, 

and exceptional accuracy, precision, recall, and F-1 scores of 97% for training metrics and 99% for testing 

metrics. The model’s robustness was further affirmed through a cross-validation score of 0.992, solidifying 

its reliability for future diagnostic applications. Despite encountering a minor accuracy decrease on new 

datasets, fine-tuning the hyperparameter C to C = 100 significantly enhanced accuracy to 0.945, facilitating 

its seamless integration into the body health diagnosis system. These results mark a significant stride in 

optimizing SVM algorithms and extending their applicability, aligning perfectly with the study’s 

overarching purpose. Moreover, these findings hold promising implications for healthcare practices and 

patient outcomes, exemplifying the study’s commitment to refining machine learning methodologies and 

advancing diagnostic systems. Looking ahead, further exploration of the Polynomial kernel’s adaptability 

across diverse healthcare datasets could unlock new possibilities, ensuring continued innovation and 

fulfilling the comprehensive purpose of this research endeavor. 

 

REFERENCES 
[1] A. Ray and A. K. Chaudhuri, “Smart healthcare disease diagnosis and patient management: 

Innovation, improvement and skill development,” Mach. Learn. with Appl., vol. 3, p. 100011, Mar. 

2021, doi: 10.1016/J.MLWA.2020.100011. 

[2] J. Vamathevan et al., “Applications of machine learning in drug discovery and development,” Nat. 

Rev. Drug Discov., vol. 18, no. 6, pp. 463–477, 2019, doi: 10.1038/s41573-019-0024-5. 

[3] J. R. Cano, P. A. Gutiérrez, B. Krawczyk, M. Woźniak, and S. García, “Monotonic classification: 

An overview on algorithms, performance measures and data sets,” Neurocomputing, vol. 341, pp. 

168–182, 2019, doi: 10.1016/j.neucom.2019.02.024. 

[4] A. Singh and R. Kumar, “Heart Disease Prediction Using Machine Learning Algorithms,” Int. Conf. 

Electr. Electron. Eng. ICE3 2020, pp. 452–457, Feb. 2020, doi: 

10.1109/ICE348803.2020.9122958. 

[5] E. Retnoningsih and R. Pramudita, “Mengenal Machine Learning Dengan Teknik Supervised Dan 

Unsupervised Learning Menggunakan Python,” Bina Insa. Ict J., vol. 7, no. 2, p. 156, 2020, doi: 

10.51211/biict.v7i2.1422. 

[6] H. Abijono, P. Santoso, and N. L. Anggreini, “Algoritma Supervised Learning Dan Unsupervised 

Learning Dalam Pengolahan Data,” J. Teknol. Terap. G-Tech, vol. 4, no. 2, pp. 315–318, Apr. 2021, 

doi: 10.33379/gtech.v4i2.635. 

[7] D. Aprilianto, “SVM Optimization with Correlation Feature Selection Based Binary Particle 

Swarm Optimization for Diagnosis of Chronic Kidney Disease,” J. Soft Comput. Explor., vol. 1, 

no. 1, Sep. 2020, doi: 10.52465/joscex.v1i1.1. 

[8] I. S. Al-Mejibli, D. H. Abd, J. K. Alwan, and A. J. Rabash, “Performance evaluation of kernels in 

support vector machine,” Proc. - 2018 1st Annu. Int. Conf. Inf. Sci. AiCIS 2018, pp. 96–101, 2019, 

doi: 10.1109/AiCIS.2018.00029. 

[9] C. Zhang, Y. Zhou, J. Guo, G. Wang, and X. Wang, “Research on classification method of high-

dimensional class-imbalanced datasets based on SVM,” Int. J. Mach. Learn. Cybern., vol. 10, no. 

7, pp. 1765–1778, 2019, doi: 10.1007/s13042-018-0853-2. 

[10] S. F. Hussain, “A novel robust kernel for classifying high-dimensional data using Support Vector 

Machines,” Expert Syst. Appl., vol. 131, pp. 116–131, 2019, doi: 10.1016/j.eswa.2019.04.037. 

[11] V. Pappu and P. M. Pardalos, High-Dimensional Data Classification. doi: 10.1007/978-1-4939-

0742-7. 

[12] S. Ghosh, A. Dasgupta, and A. Swetapadma, “A study on support vector machine based linear and 

non-linear pattern classification,” Proc. Int. Conf. Intell. Sustain. Syst. ICISS 2019, no. Iciss, pp. 

24–28, 2019, doi: 10.1109/ISS1.2019.8908018. 

[13] A. Goel and S. K. Srivastava, “Role of kernel parameters in performance evaluation of SVM,” 



 

Scientific Journal of Informatics, Vol. 10, No. 4, Nov 2023 | 453  
 

Proc. - 2016 2nd Int. Conf. Comput. Intell. Commun. Technol. CICT 2016, pp. 166–169, 2016, doi: 

10.1109/CICT.2016.40. 

[14] N. L. Husni, M. Al Muhaajir, E. Prihatini, A. Silvia, S. Nurmaini, and I. Yani, “Optimal Kernel 

Classifier in Mobile Robots for Determining Gases Type,” Proc. 2018 Int. Conf. Electr. Eng. 

Comput. Sci. ICECOS 2018, vol. 17, pp. 107–110, 2019, doi: 10.1109/ICECOS.2018.8605252. 

[15] V. Sharma, D. Baruah, D. Chutia, P. Raju, and D. K. Bhattacharya, “An assessment of support 

vector machine kernel parameters using remotely sensed satellite data,” 2016 IEEE Int. Conf. 

Recent Trends Electron. Inf. Commun. Technol. RTEICT 2016 - Proc., pp. 1567–1570, 2017, doi: 

10.1109/RTEICT.2016.7808096. 

[16] N. Reska and K. Tsabita, “Comparison of KNN, naive bayes, and decision tree methods in 

predicting the accuracy of classification of immunotherapy dataset,” J. Student Res. Explor., vol. 

1, no. 2, pp. 104–121, Jul. 2023, doi: 10.52465/josre.v1i2.170. 

[17] H. Kaur and V. Kumari, “Predictive modelling and analytics for diabetes using a machine learning 

approach,” Appl. Comput. Informatics, vol. 18, no. 1–2, pp. 90–100, 2022, doi: 

10.1016/j.aci.2018.12.004. 

[18] S. Bashir, Z. S. Khan, F. Hassan Khan, A. Anjum, and K. Bashir, “Improving Heart Disease 

Prediction Using Feature Selection Approaches,” Proc. 2019 16th Int. Bhurban Conf. Appl. Sci. 

Technol. IBCAST 2019, pp. 619–623, 2019, doi: 10.1109/IBCAST.2019.8667106. 

[19] S. Uddin, A. Khan, M. E. Hossain, and M. A. Moni, “Comparing different supervised machine 

learning algorithms for disease prediction,” BMC Med. Inform. Decis. Mak., vol. 19, no. 1, pp. 1–

16, 2019, doi: 10.1186/s12911-019-1004-8. 

[20] S. I. Ayon, M. M. Islam, and M. R. Hossain, “Coronary Artery Heart Disease Prediction: A 

Comparative Study of Computational Intelligence Techniques,” IETE J. Res., vol. 68, no. 4, pp. 

2488–2507, 2022, doi: 10.1080/03772063.2020.1713916. 

[21] “View of Electronic Medical Record Analysis To Determine Medical Diagnosis In Chapter Icd 10 

Category Using Machine Learning.” 

[22] Y. Khan, A. E. Ostfeld, C. M. Lochner, A. Pierre, and A. C. Arias, “Monitoring of Vital Signs with 

Flexible and Wearable Medical Devices,” Adv. Mater., vol. 28, no. 22, pp. 4373–4395, 2016, doi: 

10.1002/adma.201504366. 

[23] R. Ashmore, R. Calinescu, and C. Paterson, “Assuring the Machine Learning Lifecycle: Desiderata, 

Methods, and Challenges,” ACM Comput. Surv., vol. 54, no. 5, 2021, doi: 10.1145/3453444. 

[24] D. Rafique and L. Velasco, “Machine learning for network automation: Overview, architecture, 

and applications [Invited Tutorial],” J. Opt. Commun. Netw., vol. 10, no. 10, pp. D126–D143, 2018, 

doi: 10.1364/JOCN.10.00D126. 

[25] D. P. F. Möller, “Machine Learning and Deep Learning,” Adv. Inf. Secur., vol. 103, pp. 347–384, 

2023, doi: 10.1007/978-3-031-26845-8_8. 

[26] V. K. Chauhan, K. Dahiya, and A. Sharma, “Problem formulations and solvers in linear SVM: a 

review,” Artif. Intell. Rev., vol. 52, no. 2, pp. 803–855, 2019, doi: 10.1007/s10462-018-9614-6. 

[27] J. Qezelbash-Chamak, S. Badamchizadeh, K. Eshghi, and Y. Asadi, “A survey of machine learning 

in kidney disease diagnosis,” Mach. Learn. with Appl., vol. 10, p. 100418, Dec. 2022, doi: 

10.1016/j.mlwa.2022.100418. 

[28] S. Chidambaram and K. G. Srinivasagan, “Performance evaluation of support vector machine 

classification approaches in data mining,” Cluster Comput., vol. 22, pp. 189–196, 2019, doi: 

10.1007/s10586-018-2036-z. 

[29] S. Nandhini and D. J. Marseline, “Performance Evaluation of Machine Learning Algorithms for 

Email Spam Detection,” Int. Conf. Emerg. Trends Inf. Technol. Eng. ic-ETITE 2020, pp. 1–4, 2020, 

doi: 10.1109/ic-ETITE47903.2020.312. 

[30] M. Mohammadi et al., “A comprehensive survey and taxonomy of the SVM-based intrusion 

detection systems,” J. Netw. Comput. Appl., vol. 178, no. January, p. 102983, 2021, doi: 

10.1016/j.jnca.2021.102983. 

[31] O. Karal, “Performance comparison of different kernel functions in SVM for different k value in 

k-fold cross-validation,” Proc. - 2020 Innov. Intell. Syst. Appl. Conf. ASYU 2020, pp. 0–4, 2020, 

doi: 10.1109/ASYU50717.2020.9259880. 

[32] H. Talabani and E. Avci, “Performance Comparison of SVM Kernel Types on Child Autism 

Disease Database,” 2018 Int. Conf. Artif. Intell. Data Process. IDAP 2018, pp. 1–5, 2019, doi: 

10.1109/IDAP.2018.8620924. 

[33] M. A. Almaiah et al., “Machine Kernels,” 2022. 

[34] A. S. Handayani et al., “Design of Android and IoS Applications for Mobile Health Monitoring 



454 | Scientific Journal of Informatics, Vol. 10, No. 4, Nov 2023 

 

Devices,” Adv. Sustain. Sci. Eng. Technol., vol. 5, no. 2, p. 0230206, 2023, doi: 

10.26877/asset.v5i2.16508. 

 


