
Scientific Journal of Informatics
 Vol. 11, No. 1, Feb 2024

p-ISSN 2407-7658 http://journal.unnes.ac.id/nju/index.php/sji e-ISSN 2460-0040

Scientific Journal of Informatics, Vol. 11, No. 1, Feb 2024 | 11

Damerau-Levenshtein Distance Algorithm Based on Abstract Syntax

Tree to Detect Code Plagiarism

Ahlijati Nuraminah1*, Abdullah Ammar2

1, 2Computer Science Department, Sekolah Tinggi Ilmu Manajemen dan Ilmu Komputer ESQ, Indonesia

Abstract.

Purpose: This research aimed to detect source code plagiarism based on Abstract Syntax Tree using Damerau-

Levenshtein Distance algorithm, which is expected to streamline the inaccuracies and time-consumption associated

with the manual process.

Methods: Damerau-Levenshtein Distance algorithm was used to determine the similarity between source code files

and calculate F-Measure. The dataset, which consisted of 178 source code files from 20 coursework assignments, was

obtained from GitHub by Lawton Nichols in 2019. Damerau-Levenshtein Distance algorithm was used to compute the

minimum cost required to transform one line of code into another. Furthermore, ANTLR detected AST, which was

processed through preprocessing, including node pruning, function and variable sorting, and log output removal.

Result: The result showed that the two methods took 5.704 seconds and 0.996 seconds to complete. The lowest and

highest values obtained using F-Measure were 0.16 and 0.8, respectively. Therefore, the system performed detection

processes quickly and effectively detected common forms of code plagiarism with difficulty in the more complex

forms.

Novelty: In conclusion, this research used AST and Damerau-Levenshtein Distance algorithm to calculate the 5 levels

of similarity in Java programming language source code. For further development, preprocessing steps were needed to

prune unnecessary nodes and detect equivalent but differently syntaxed code.

Keywords: Code plagiarism, Code similarity, Abstract syntax tree, Damerau-levensthein distance algorithm.

Received October 2023 / Revised November 2023 / Accepted December 2023

This work is licensed under a Creative Commons Attribution 4.0 International License.

INTRODUCTION
Plagiarism is a copyright infringement [1] in various forms, such as art, graphic design, and writing. It is

prevalent in programming coursework, particularly code plagiarism, defined as when individuals either

copy codes entirely or partially, essentially stealing someone else source code [2]. According to preliminary

research [3], 65% of students engage in code plagiarism at least once during their academic studies, which

[4], poses challenges for lecturers. This is because students focus on obtaining grades [3] rather than

learning and gaining programming experience.

The act of acquiring programming skills is typically a result of practical experience gained through constant

practice and the successful completion of assignments given by lecturers [5]. Each assignment is manually

checked to ensure that no students engaged in code plagiarism, although it is time-consuming and

challenging [6]. According to interviews with the lecturer, it takes approximately one to two hours to assess

relatively 20 assignments. This labor-intensive process consumes valuable time and diverts energy that

could be more efficiently directed toward other productive activities. To address these challenges and

enhance efficiency, there is need for an automated tool to detect code plagiarism.

Numerous automated tools, including SIM [7], JPlag [8], and the Measure of Software Similarity (MOSS)

[9] are currently used to detect code plagiarism. SIM and MOSS were considered promising in this situation

[10], while another research stated that JPlag and MOSS were found to be effective in detecting plagiarism

[11]. Despite the efficacy, there is a need for improvements, particularly in enhancing user usability and

interaction with the output of these tools [10]. A significant disadvantage identified in existing code

*
Corresponding author.

Email addresses: ahlijati.nuraminah@esqbs.ac.id (Nuraminah)

DOI: 10.15294/sji.v11i1.48064

http://creativecommons.org/licenses/by/4.0/
https://journal.unnes.ac.id/nju/index.php/sji/article/view/48064

12 | Scientific Journal of Informatics, Vol. 11, No. 1, Feb 2024

plagiarism detection systems is the poor presentation and visualization of output, prompting the need for

enhancement in this aspect [11].

In code plagiarism detection, various methods and algorithms are used, including Token [12], Graph [13],

Attribute [14], and Structure-based Detection [15]. Furthermore, structure or Parse-based Detection, used

to generate Abstract Syntax Trees (AST), is suitable for identifying code plagiarism because it accurately

represents the structure [16]. AST is also considered effective in identifying attempts to avoid detection

systems, such as variable renaming, adding comments, and function rearrangement. The preprocessing of

AST, which includes sorting, filtering, and weighting operations, is effective for creating a more efficient

system for comparing code files [17]. Various algorithms, such as Damerau-Levenshtein Distance, are used

in the comparison process. Initially designed for detecting spelling errors [18], [19], this algorithm is

effective in code detection due to the high accuracy based on the grammar rules used [19].

Previous research has adopted diverse strategies for plagiarism detection, such as the Winnowing algorithm

in MOSS software [20], logistic regression for comparing code differences [21], string tiling algorithm [22]

, and syntax-based improvements using Smith-Waterman [17].Despite these approaches, there has been

limited exploration of Damerau-Levenshtein Distance in Java programming language. This research aims

to fill this gap by investigating the applicability of Damerau-Levenshtein Distance algorithm, specifically

for detecting source code plagiarism in Java. It also aims to incorporate a 5-level similarity measure into

the evaluation process.

In this research, Java source code served as the main data format. The code, initially represented as a string,

is passed to the lexer and parser generated by ANTLR. The lexer translates the string data into an array of

tokens converted into Concrete Syntax Tree (CST), which is then transformed into AST through a walker.

To enhance analysis, a preprocessing step was adopted to arrange variables, functions, and class

declarations, based on the subtree depth in ascending order. The comparison phase was carried out using

Damerau-Levenshtein Distance algorithm. This algorithm calculates the minimum cost in numerical units

needed to transform one or an array of strings into another, thereby providing a resultant similarity value.

The next step used a Confusion Matrix table to assess the successful and failed rate [23], [24] of detecting

plagiarism pairs. From the confusion matrix, metrics such as Accuracy [25], Precision, Recall, and F-

Measure values were obtained.

METHODS

The sequential steps adopted in this research are shown in Figure 1.

Figure 1. Research flow

Scientific Journal of Informatics, Vol. 11, No. 1, Feb 2024 | 13

Data Collection

This research used primary data obtained from the Academic Department of STIMIK ESQ. The dataset

comprised 24 source code files, divided equally between the two assessment periods of 2019/2020 and

2020/2021 academic years, resulting in 66 pairs accessible on https://github.com/ahlijatinuraminah/plagio.

Based on manual analysis, the source code files in this dataset had an average cheating level of 4, with each

containing between 100 and 300 lines of code. Manual observation revealed several cheating attributes in

the data, including adding comments, modifying identifiers such as variable names and functions,

reordering functions, changing data types to its equivalent, and function extraction. A detailed breakdown

of this information is shown in Table 1.

Table 1. Frequency of original and plagiarized data for the data structures and algorithms course.
No Year Data Frequency

1 2019/2020 Original 2020_1.java

2 2019/2020 Original 2020_2.java

3 2019/2020 Original 2020_4.java

4 2019/2020 Original 2020_9.java

5 2019/2020 Original 2020_11.java

6 2019/2020 Plagiarized Predicted 2020_0.java
7 2019/2020 Plagiarized Predicted 2020_5.java

8 2019/2020 Plagiarized Predicted 2020_6.java

9 2019/2020 Plagiarized Predicted 2020_7.java
10 2019/2020 Plagiarized Predicted 2020_10.java

11 2019/2020 Plagiarized Predicted 2020_12.java

12 2019/2020 Plagiarized Predicted 2020_13.java
13 2020/2021 Original 2021_2.java

14 2020/2021 Original 2021_3.java

15 2020/2021 Original 2021_5.java
16 2020/2021 Original 2021_7.java

17 2020/2021 Original 2021_8.java

18 2020/2021 Plagiarized Predicted 2021_0.java

19 2020/2021 Plagiarized Predicted 2021_1.java

20 2020/2021 Plagiarized Predicted 2021_4.java
21 2020/2021 Plagiarized Predicted 2021_6.java

22 2020/2021 Plagiarized Predicted 2021_9.java

23 2020/2021 Plagiarized Predicted 2021_10.java
24 2020/2021 Plagiarized Predicted 2021_11.java

The secondary data used in this research was sourced from the GitHub page [17] uploaded in 2019. The

dataset consisted of source code files generated by a program, divided into two categories, namely original

and plagiarized data. The original and plagiarized data had an average of 141 and 2063 lines of code,

respectively. In addition, both categories had an average cheating level of 5. The generated data comprised

several cheating attributes commonly associated with acts of plagiarism, such as the random addition of

spaces, modification of every identifier, including variable names, arguments, and functions, changing data

types to its equivalent, replacement of operations with equivalent ones, substitution of control structures,

namely with or for loops and vice versa, and rearrangement of the order of statements and functions. The

frequency of original and plagiarized data for dataset are shown in Table 2.

Table 2. Frequency of original and plagiarized data for dataset
No Data Frequency

1 Original 10

2 Plagiarized 10

Implementation of Algorithm

Damerau-Levenshtein Distance algorithm calculated the minimum cost required to transform one string S1

into another S2. The operations allowed include insertion, depicting adding a character at a specific

position, deletion, meaning removing a character from any position, substitution implying replacing a

character at any position, and transposition, representing swapping two adjacent characters. For example,

string S1 (aku) needs a minimum of three costs or steps to obtain S2 (kami). These operations include

transposition, swapping characters at indices 0 and 1, the next is substitution, replacing the character at

index 2, and finally, insertion, adding a character at index 3. In terms of computational complexity, the

algorithm has a time complexity of O(m.n) in the worst-case scenario, along with a corresponding space

complexity of O(m.n).

https://github.com/ahlijatinuraminah/plagio

14 | Scientific Journal of Informatics, Vol. 11, No. 1, Feb 2024

The various processing stages are outlined as follows [26]:

a. Input Code Files

Existing code files are classified into two categories, namely plagiarized and non-plagiarized. Following

this categorization, the files are inputted and read with the built-in functions of the Node.js module,

specifically fs/promises.

The process starts with a manual data analysis to identify plagiarism cases in the examined code files.

Furthermore, the data is systematically labeled based on the detected forms of cheating. These standard

forms of code plagiarism are further categorized into several levels, outlined in ascending order of

severity [27]:

- Level 1: Copy and paste entirely.

- Level 2: Altering comments.

- Level 3: Modifying identifiers (class, function, and variable names).

- Level 4: Rearranging code sequences.

- Level 5: Code refactoring (function separation, code replacement).

b. Formation of CST

After extracting the string, data from the read code files is passed to the lexer and parser generated by

ANTLR. The lexer processes the string data into an array of tokens, read by the parser, and converted

into CST. CST is then passed to a walker to be transformed into AST.

c. Formation, Preprocessing, and Linearization of AST

After obtaining CST, a walker is used to transform it into AST. The walker systematically traverses

each node in CST, eliminating redundant nodes. Immediately AST is formed, preprocessing is

performed to organize variable, function, and class declarations in ascending order based on the subtree

depth. Subsequently, the tree is linearized into a string array for comparison using Damerau-Levenshtein

Distance algorithm.

d. Comparison with Damerau-Levenshtein Distance Algorithm

The comparison process was done using Damerau-Levenshtein Distance algorithm, implemented in

JavaScript. After the process had been completed, the minimum cost in numerical units was used to

transform one string or its arrays into another.

e. Calculating Similarity

After obtaining the minimum cost or weight, the similarity value was calculated using the following

formula [19]:

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = (1 −
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑚,𝑛]

𝑀𝑎𝑥(𝑚,𝑛)
) (1)

Distance[m,n] represents the minimum weight obtained from the calculation to transform string or array m

into string/array n using Damerau-Levenshtein Distance algorithm. Max(m,n) represents the length of the

longest string or array between m and n, in addition, the similarity values are sorted in ascending order.

System Development using ANTLR

The system was developed by generating AST from the source code files using ANTLR4 library (Another

Tool for Language Recognition). This library is effective for automatically creating lexers and parsers using

specific language rules called grammar [28]. The grammar specified by ANTLR for Java programming

language was used for this research. During lexical analysis, the lexer uses this grammar to transform

character sequences into token. The parser then uses the resulting token sequence to generate CST. The

detailed process of transforming CST to AST formation is shown in Figure 2.

Scientific Journal of Informatics, Vol. 11, No. 1, Feb 2024 | 15

Figure 2. The process of AST formation using ANTLR library

CST is a tree structure that stores the entire representation of the source code file. It is then transformed

into AST to simplify and retain only essential information. This simplification process includes removing

unnecessary nodes, reorganizing and sorting subtree structures for a function [29]. The next step is the

linearization process, where the tree structure is transformed into an array of ruleIndex data. The generated

array is crucial for comparing the two source code files using Damerau-Levenshtein Distance algorithm.

Immediately, the minimum cost was obtained, calculations were performed to determine the similarity

value using a predefined formula. Subsequently, these values are sorted in ascending order, facilitating the

identification of the source code file associated with plagiarism.

System Development using Electron

To facilitate the use of code plagiarism detection system, Graphical User Interface (GUI) is needed. In this

research, the developed GUI is a desktop application created using the Electron framework. The electron

integrates Chromium and Node.js, enabling the development of native applications using web technologies

such as JavaScript, HTML, and CSS [30]. Chromium renders the application interface on the screen or

windows [31], while Node.js provides essential system-level functionalities such as file access and database

interactions [32]. In the Electron framework, two concurrent processes are operated, namely, the main one

and the renderer. The main one is responsible for creating or destroying the renderer process windows using

the BrowserWindow, where the user interface functions. The renderer process lacks direct access to Node.js

modules, therefore, a bridge is needed to connect to them in the main one. This connection is facilitated

through Inter-Process Communication (IPC) [33], which defines a listener, often referred to as a channel,

operating based on the events exchanged between processes. An illustration of the communication process

in the Electron application is shown in Figure 3.

Figure 3. The chromium process in the electron application

In code plagiarism detection system, the main process orchestrates the detection procedure, which is

connected to the renderer to receive input file paths for the analysis. The renderer transmits the input file

paths to the primary process through a designated channel. Subsequently, the main process implores a

16 | Scientific Journal of Informatics, Vol. 11, No. 1, Feb 2024

function to conduct code plagiarism detection, producing a Map data structure containing keys with file

names and corresponding similarity values. This result is then sent back to the renderer to be transformed

into a table format for easier user readability. A comprehensive overview of the detection process is shown

in Figure 4.

Figure 4. The flow of code plagiarism detection process

System Evaluation

The system is assessed to determine its efficacy in predicting plagiarism, and the evaluated results were

presented in a Confusion Matrix table to measure the system performance. In this matrix, True Positive

signifies correctly identified plagiarized data. False positive indicates circumstances where plagiarized data

is incorrectly classified as original. True Negative represents accurately recognized original and correct

data. False negatives denote cases where the original data was mistakenly considered as plagiarized.

From the existing Confusion Matrix table, Precision, Recall, and F-Measure values can be calculated to

evaluate the performance of the system in detecting plagiarism. The precision value determines how many

predictions are truly positive out of all the total positive ones. The recall value determines how many true

positive predictions there are compared to the total data. Meanwhile, F-Measure calculates the average

comparison between the precision and recall values.

RESULTS AND DISCUSSIONS

The accuracy of the system was tested by inputting the previously collected data. The first test used

generated data, consisting of 20 source code files, with a threshold of 0.5. Subsequently, the second test

used source code files from the Data Structures and Algorithms course with a threshold of 0.85. Time

measurement testing was conducted to compare the efficiency of manually detecting code plagiarism by

experts with that of the system. Seven source code files, equivalent to 21 pairs of files, were used for

comparison. Manual detection time was calculated using a stopwatch, while the system was measured using

the built-in Node.js performance.now() function.

The first accuracy test, conducted on 20 generated source code files, lasted 5.704 seconds. The results

showed a significantly low system accuracy in detecting code plagiarism, reflected in an F-Measure value

of 0.16. A comprehensive breakdown of the outcomes from this initial accuracy test is shown in Table 3.

Table 3. The result of the first accuracy test for generated data.
Threshold Time TP FP TN FN Precision Recall F-Measure

0.5 5.704s 5 5 137 43 0.5 0.1 0.16

The second test was conducted twice using information from the Data Structures and Algorithms course,

comprising two sets of 12 source code files. The first and second sets were drawn from assessment 2 of the

2019/2020 and the 2020/2021 academic year, respectively. The processing time for the first and second

Scientific Journal of Informatics, Vol. 11, No. 1, Feb 2024 | 17

tests lasted for 0.996 seconds and 0.631 seconds, respectively. The detailed results of the first accuracy test

are shown in Table 4.

Table 4. The result of the second accuracy test.

Year Threshold Time TP FP TN FN Precision Recall F-Measure

2019/2020 0.85 0.996s 2 2 60 0 0.5 1 0.67

2020/2021 0.85 0.631s 4 2 58 0 0.67 1 0.8

The results of the two tests showed a significant difference in the ability of the system to detect code

plagiarism. In the first accuracy test, the system struggled to identify cheating effectively, primarily because

the source code files in this test presented more diverse and complex forms of cheating compared to those

in the second test. The complex nature of the cheating methods could have helped the efficiency of the

system. However, in the second test, the system was able to detect code plagiarism effectively because the

cheating in the source code files was less complicated.

The time processing tests showed a significant difference between manual and automatic code plagiarism

detection. On average, manual processing lasted 53.18 seconds, while the system processed each pair of

source code files within 0.36 seconds. The total time for manual processing was 1116.90 seconds,

significantly surpassing the system processing time of 7.58 seconds.

Table 5. Difference in time for manual and automatic detection.

Source Code

A

Source Code

B

Manual

Detection (s)

Automatic

Detection (s)

2021_1.java 2021_2.java 84.66 0.39

2021_1.java 2021_3.java 13.38 0.63

2021_1.java 2021_7.java 83.22 0.11
2021_1.java 2021_9.java 181.92 0.07

2021_1.java 2021_10.java 153.60 0.55

2021_1.java 2021_11.java 61.92 0.50
2021_2.java 2021_3.java 68.88 0.10

2021_2.java 2021_7.java 66.96 0.20

2021_2.java 2021_9.java 25.98 0.69
2021_2.java 2021_10.java 16.02 0.42

2021_2.java 2021_11.java 17.94 0.09

2021_3.java 2021_7.java 24.12 0.34
2021_3.java 2021_9.java 15.60 0.19

2021_3.java 2021_10.java 17.88 0.61

2021_3.java 2021_11.java 10.98 0.68
2021_7.java 2021_9.java 77.04 0.11

2021_7.java 2021_10.java 27.00 0.30

2021_7.java 2021_11.java 24.90 0.07
2021_9.java 2021_10.java 24.00 0.83

2021_9.java 2021_11.java 30.42 0.35

2021_10.java 2021_11.java 90.48 0.36

Code plagiarism detection system testing results showed variations across different source code file sets.

In respect to the three tests, the processing times ranged from a minimum of 0.631 seconds to a maximum

of 5.704 seconds. Furthermore, the highest and lowest effectiveness level in code plagiarism detection, as

determined by F-Measure value, are 0.8 and 0.16. This showed that the system could only detect four out

of five existing cheating levels. The detailed breakdown of code plagiarism detection results is shown in

Table 6.

Table 6. Code plagiarism detection results from generated source code files and the data structures and

algorithms course from 2019-2021

Test
Number

Total Pairs of Source
Code Files Processed

Avg Lines
of Code

Cheating Level Time F-Measure

1 190 2063 5 5.704s 0.16

2 66 300 4 0.996s 0.67

18 | Scientific Journal of Informatics, Vol. 11, No. 1, Feb 2024

This present investigation comprehensively measured five distinct levels of similarity as opposed to

previous research that only assessed accuracy at one level of similarity [17]. Smith-Waterman algorithm

[12] can detect more cases of plagiarism compared to software such as MOSS and JPLAG. However, the

time required to detect code plagiarism is less efficient than MOSS and JPLAG applications. The

implementation of Damerau-Levenshtein Distance algorithm applied in this research significantly reduced

the time needed to detect code plagiarism.

Table 7. Result comparation with previous research

Methods Avg Time (s) Precision Recall F-Measure

Smith-Waterman [12] 38.39 0.673 0.660 0.667

Damerau-Levenshtein Distance 0.36 0.670 1 0.800

Table 7 shows a comparison between the results of this research and the findings of previous ones [12] In

the prior investigation, three source code files were tested, while the existing one expanded the evaluation

to seven. The average processing time is 38.39 seconds and 0.36 seconds, respectively.

CONCLUSION

Based on the conducted analysis and experiments, it was concluded that the use of an automated system

significantly reduced the processing time for seven source code files or 21 pairs, from 1116.90 seconds or

18.61 minutes to 7.58 seconds or 0.12 minutes for code plagiarism detection in the Data Structures and

Algorithms course. F-Measure value obtained from the system detection test on generated source code files

with a cheating level of five was 0.16, indicating its inability to detect code plagiarism at this level.

Meanwhile, F-Measure values obtained from the system detection test on source code files from the Data

Structures and Algorithms course from 2019 to 2021 with a cheating level of four were 0.8 and 0.67. This

showed that the reasonable effectiveness in detecting code plagiarism at a cheating level is four.

Several recommendations for improvement were identified from the test results. First, there was a

suggestion to explore hybrid-based detection methods by combining syntax and structure-based approaches

aimed at enhancing the accuracy of the system in identifying code plagiarism. Additionally, the

incorporation of other algorithms was recommended to further refine the system performance. Another

suggestion was to include a function in the system for detecting lines of code considered templates,

providing a more comprehensive approach to identifying plagiarism.

REFERENCES
[1] M. Krokoscz, “Plagiarism in articles published in journals,” Int. J. Educ. Integr., vol. 17, no. 1, pp.

1–22, 2021, [Online]. Available: https://doi.org/10.1007/s40979-020-00063-5

[2] G. Cosma and M. Joy, “Towards a definition of source-code plagiarism,” IEEE Trans. Educ., vol.

51, no. 2, pp. 195–200, 2008, doi: 10.1109/TE.2007.906776.

[3] J. Pierce and C. Zilles, “Investigating student plagiarism patterns and correlations to grades,” Proc.

Conf. Integr. Technol. into Comput. Sci. Educ. ITiCSE, pp. 471–476, 2017, doi:

10.1145/3017680.3017797.

[4] M. N. Tran, S. Marshall, and L. Hogg, “Development of doctoral student perceptions of plagiarism

and academic integrity: the roles of agency and aspirational identity,” Acad. Qual. Integr. New

High. Educ. Digit. Environ., pp. 143–162, 2023, doi: 10.1016/B978-0-323-95423-5.00006-5.

[5] L. Sun, L. Hu, and D. Zhou, “Programming attitudes predict computational thinking: Analysis of

differences in gender and programming experience,” Comput. Educ., vol. 181, no. 27, p. 104457,

2022, doi: 10.1016/j.compedu.2022.104457.

[6] A. A. Pandit and G. Toksha, “Review of Plagiarism Detection Technique in Source Code,” pp.

393–405, 2020, doi: 10.1007/978-981-15-0633-8_38.

[7] D. Gitchell and N. Tran, “Sim,” ACM SIGCSE Bull., vol. 31, no. 1, pp. 266–270, 1999, doi:

10.1145/384266.299783.

[8] A. Ahtiainen, S. Surakka, and M. Rahikainen, “Plaggie,” Proc. 6th Balt. Sea Conf. Comput. Educ.

Res. Koli Call. 2006, pp. 141–142, 2006, doi: 10.1145/1315803.1315831.

[9] V. T. Martins, D. Fonte, P. R. Henriques, and D. Da Cruz, “Plagiarism detection: A tool survey and

comparison,” OpenAccess Ser. Informatics, vol. 38, pp. 143–158, 2014, doi:

10.4230/OASIcs.SLATE.2014.143.

[10] A. Ahadi and L. Mathieson, “A Comparison of Three Popular Source code Similarity Tools for

Detecting Student Plagiarism,” Proc. Twenty-First Australas. Comput. Educ. Conf. ACM

Scientific Journal of Informatics, Vol. 11, No. 1, Feb 2024 | 19

(Association Comput. Mach., pp. 112–117, 2019, doi: 10.1145/3286960.3286974.

[11] M. J. Mišić, J. Protić, and M. V. Tomašević, “Improving source code plagiarism detection: Lessons

learned,” 2017 25th Telecommun. Forum, TELFOR 2017 - Proc., vol. 2017-January, pp. 1–8, 2018,

doi: 10.1109/TELFOR.2017.8249481.

[12] Y. Golubev, V. Poletansky, N. Povarov, and T. Bryksin, “Multi-threshold token-based code clone

detection,” Proc. - 2021 IEEE Int. Conf. Softw. Anal. Evol. Reengineering, SANER 2021, pp. 496–

500, 2021, doi: 10.1109/SANER50967.2021.00053.

[13] N. Kumar, “A graph based automatic plagiarism detection technique to handle artificial word

reordering and paraphrasing,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), vol. 8404 LNCS, no. PART 2, pp. 481–494, 2014, doi: 10.1007/978-

3-642-54903-8_40.

[14] O. Karnalim, “IR-based technique for linearizing abstract method invocation in plagiarism-

suspected source code pair,” J. King Saud Univ. - Comput. Inf. Sci., vol. 31, no. 3, pp. 327–334,

2019, doi: 10.1016/j.jksuci.2018.01.012.

[15] O. Karnalim, “A Low-Level Structure-based Approach for Detecting Source Code Plagiarism,”

2019, [Online]. Available: http://orcid.org/0000-0003-4930-6249

[16] M. Duracik, E. Krsak, and P. Hrkut, “Scalable Source Code Plagiarism Detection Using Source

Code Vectors Clustering,” Proc. IEEE Int. Conf. Softw. Eng. Serv. Sci. ICSESS, vol. 2018-

November, pp. 499–502, 2018, doi: 10.1109/ICSESS.2018.8663708.

[17] L. Nichols, K. Dewey, M. Emre, S. Chen, and B. Hardekopf, “Syntax-based Improvements to

Plagiarism Detectors and their Evaluations,” Annu. Conf. Innov. Technol. Comput. Sci. Educ.

ITiCSE, pp. 555–561, 2019, doi: 10.1145/3304221.3319789.

[18] Y. Chaabi and F. Ataa Allah, “Amazigh spell checker using Damerau-Levenshtein algorithm and

N-gram,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 8, pp. 6116–6124, 2022, doi:

10.1016/j.jksuci.2021.07.015.

[19] F. J. Damerau, “A technique for computer detection and correction of spelling errors,” Commun.

ACM, vol. 7, no. 3, pp. 171–176, 1964, doi: 10.1145/363958.363994.

[20] A. M. Bejarano, L. E. García, and E. E. Zurek, “Detection of source code similitude in academic

environments,” Comput. Appl. Eng. Educ., vol. 23, no. 1, pp. 13–22, 2015, doi: 10.1002/cae.21571.

[21] N. Tahaei and D. C. Noelle, “Automated plagiarism detection for computer programming exercises

based on patterns of resubmission,” ICER 2018 - Proc. 2018 ACM Conf. Int. Comput. Educ. Res.,

pp. 178–186, 2018, doi: 10.1145/3230977.3231006.

[22] T. Saǧlam, S. Hahner, J. W. Wittler, and T. Kühn, “Token-based plagiarism detection for

metamodels,” Proc. - ACM/IEEE 25th Int. Conf. Model Driven Eng. Lang. Syst. Model. 2022

Companion Proc., pp. 138–141, 2022, doi: 10.1145/3550356.3556508.

[23] Y. Yustikasari, H. Mubarok, and R. Rianto, “Comparative Analysis Performance of K-Nearest

Neighbor Algorithm and Adaptive Boosting on the Prediction of Non-Cash Food Aid Recipients,”

Sci. J. Informatics, vol. 9, no. 2, pp. 205–217, 2022, doi: 10.15294/sji.v9i2.32369.

[24] N. Hazimah, S. Harahap, A. Amirullah, M. B. Saputro, and I. A. Tamaroh, “Classification of

potential customers using C4.5 and k-means algorithms to determine customer service priorities to

maintain loyalty,” J. Soft Comput. Explor., vol. 3, no. 2, pp. 123–130, 2022, doi:

10.52465/joscex.v3i2.89.

[25] W. F. Abror and M. Aziz, “Journal of Information System Bankruptcy Prediction Using Genetic

Algorithm-Support Vector Machine (GA-SVM) Feature Selection and Stacking,” vol. 1, no. 2,

pp. 103–108, 2023.

[26] M. B. Miles, A. M. Huberman, and J. Saldana, Qualitative Data Analysis: A Methods Sourcebook

3rd Edition, 3rd ed. SAGE Publications, Inc, 2014.

[27] W. Wen, X. Xue, Y. Li, P. Gu, and J. Xu, “Code Similarity Detection using AST and Textual

Information,” Int. J. Performability Eng., vol. 15, no. 10, pp. 2683–2691, 2019, doi:

10.23940/ijpe.19.10.p14.26832691.

[28] T. Parr, The Definitive ANTLR 4 Reference. Dallas, Texas: The Pragmatic Bookshelf, 2014.

[29] Y. Y. Wang, R. K. Shen, G. J. Chiou, C. Y. Yang, V. R. L. Shen, and F. P. Putri, “Novel code

plagiarism detection based on abstract syntax tree and fuzzy petri nets,” Int. J. Eng. Educ., vol. 1,

no. 1, pp. 46–56, 2019, doi: 10.14710/IJEE.1.1.46-56.

[30] K. Kredpattanakul and Y. Limpiyakorn, “Transforming javascript-based web application to cross-

platform desktop with electron,” Lect. Notes Electr. Eng., vol. 514, pp. 571–579, 2019, doi:

10.1007/978-981-13-1056-0_56.

[31] R. Ollila, N. Mäkitalo, and T. Mikkonen, “Modern Web Frameworks: A Comparison of Rendering

20 | Scientific Journal of Informatics, Vol. 11, No. 1, Feb 2024

Performance,” J. Web Eng., 2022, doi: 10.13052/jwe1540-9589.21311.

[32] G. Manduchi, A. Luchetta, G. Moro, A. Rigoni, and C. Taliercio, “Web-based streamed waveform

display using MDSplus events and Node.js,” Fusion Eng. Des., vol. 157, no. January, p. 111625,

2020, doi: 10.1016/j.fusengdes.2020.111625.

[33] X. Geng, X. Zeng, L. Hu, and Z. Guo, “An Novel Architecture and Inter-process Communication

Scheme to Adapt Chromium Based on Docker Container,” Procedia Comput. Sci., vol. 107, no.

Icict, pp. 691–696, 2017, doi: 10.1016/j.procs.2017.03.149.

