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Abstract. 

Purpose: This study aims to compare the performance of ensemble trees such as Random Forest (RF) and Double 

Random Forest (DRF) from view points of interpretability of the models. Both models have strong predictive 

performance but the inner working of the models is not human understandable. Model interpretability is required to 

explain the relationship between the predictors and the response. We apply association rules to simplify the essence of 

the models.  

Methods: This study compares interpretability of RF and DRF using association rules. Each decision tree formed from 

each model is converted into if-then rules by following the path from root node to leaf nodes. The data was selected in 

such a way that they were underfit data. This is due to the fact that DRF has been shown by other researchers to 

overcome the underfitting problem faced by RF. A Simulation study has been conducted to evaluate the extracted rules 

from RF and DRF. The rules extracted from both models are compared in terms of model interpretability based on 

support and confidence values. Association rules may also be applied to identify the characteristics of poor people who 

are working in Yogyakarta. 

Result: The simulation results revealed that the interpretability of DRF outperformed RF especially in the case of 

modelling underfit data.  On the other hand, using empirical data we have been able to characterize the profile of poor 

people who are working in Yogyakarta based on the most frequent rules.  

Novelty: Research on interpretable DRF is still rare, especially the interpretation model using association rules. 

Previous studies focused only on interpreting the random forest model using association rules. In this study, the rules 

extracted from the random forest and double random forest models are compared based on the quality of the rules 

extracted. 
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INTRODUCTION 
Statistical learning is a technique for understanding data [1]. It can be used to classify objects and predict 

outcomes. A commonly used method in the classification problem is Tree-based methods introduced by 

Breiman et al. [2]. Single tree models such as CART can be interpreted easily because the prediction logic 

is transparent. It can be followed by observing the rules formed at each split of the decision tree. CART is 

known as an unstable method because slightly changes in the training data can lead to biased prediction 

results [3]. One of the ensemble tree methods used to deal with such unsteadiness is Random Forest (RF). 

 

RF is a popular ensemble tree method that is highly accurate [4]. There are two randomization processes in 

RF such as constructing multiple decision trees using different training data by sampling with replacement 

(bootstrapping) and randomly selecting a subset of predictors for each split. Randomly selecting some 

predictors at each split reduces the correlation between the trees, which improves predictive performance. 

Accordingly, RF has the advantages of overcoming overfitting and being insensitive to outliers [5]. RF can 

also handle unbalanced data [6]. 

 

DRF is a new ensemble tree method similar to RF. DRF may outperform RF when the RF model is 

underfitting [7]. It is characterized by a relative test accuracy of less than 1 which means that the RF tree 

size is not large enough to perform well. The relative test accuracy is the accuracy of RF when a given 

nodesize is divided by the accuracy when the nodesize is set to the default value of 1. DRF differs from RF 

in that it uses all training data instead of bootstrapped training data. The use of all training data results in 
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more unique observations in the nodes, which makes the trees larger than the trees constructed by RF. 

Bootstrap sampling and random variable selection at each node are used to find the best splitting rule. These 

steps can add randomness to the splitting rule. This creates a more diverse tree in DRF than in RF. 

Therefore, DRF may have better predictive performance than RF for datasets where RF is underfitting. 

 

Previous study evaluated DRF with single classification trees, bagging, Samme and RF on 34 datasets [7]. 

The findings showed that DRF significantly outperformed other methods when RF underfitted the data. A 

study using DRF method was also performed by Aldania et al. [8] to classify the 2015 Indonesian industrial 

classification code (KBLI) from the “I” category (accommodation and food services activities) sourced 

from the 2016 economic census (SE2016) listing results. The results showed that DRF performed well. 

 

Although the ensemble tree method provides strong predictive performance, it has limitation in terms of 

model interpretability. Due to its lack of interpretability, the ensemble tree method is often called a black 

box model because it is difficult to interpret [9]. Interpretability in machine learning is the ability of a model 

to be understood by humans [10]. Interpretability is essential to understand the data based on the model's 

predictions. Additionally, model interpretability is required to explain the factors that influence the model's 

predictions. 

 

Each interpretation method attempts to capture the pattern of the model to reduce the risk of 

misinterpretation of the model predictions. Breiman et al. [4] used the variable importance approach to 

identify the most important variables in the RF model. However, it does not explain the interaction between 

the predictors and the response. Another approach to explain the black box model is the decision tree 

approach [11]. Decision tree can be easily interpreted. The decision tree is converted into an association 

rule in the form of if-then by following the path from the root node to the leaf nodes. This rule consists of 

two parts, condition (the "if" part) and prediction (the "then" part). An example of if-then rule is if today is 

weekend and today is sunny then go on holiday. 

 

Association rules can be applied in ensemble trees such as RF in interpretable trees (inTrees) framework 

[12]. Association rules is well-suited for interpreting the structure of models that implement a forest of 

trees. This method can extract simple rules from a complex set of trees. The inTrees framework works by 

extracting and classifying a set of rules from each decision tree. The rules extracted from the ensemble tree 

are combination of the rules extracted from all decision trees. The set of rules represents the relationship 

between the predictors and response in the form of if-then rules. Consequently, the rules can further be used 

for prediction. 

 

Association rules were used to identify the necessity of biopsy and surgery for thyroid patients [13]. In the 

economic field, rules extracted from the model were used to identify the factors that lead to economic 

recessions in the United States [14]. In the social field, rules extracted from RF model showed that the rules 

that most characterize the poverty status of households in Tasikmalaya City are house wall materials and 

main source of drinking water, house wall materials and cooking fuel, and house wall materials and 

motorcycle ownership [15]. Interpretation using association rules may also be applied to the issue of the 

working poor in Yogyakarta. According to the National Socio-Economic Survey (Susenas) in March 2022, 

the poverty rate in Yogyakarta is 11.34%, the highest in Java. In contrast, the unemployment rate in 

Yogyakarta is 4.06%, which is relatively low. This indicates that there are working poor in Yogyakarta. 

Therefore, it is important to identify the factors that contribute to working poverty in Yogyakarta. 

Extracting rules from the ensemble tree can be used to develop policies to reduce the risk of being poor. 

 

According to the previous background, RF and DRF are a number of decision trees that use aggregation to 

achieve more accurate predictions than single decision tree. However, having a powerful prediction is 

insufficient for understanding the model's predictions. Interpretation of the model is needed to understand 

how the predictors affect the response. For this reason, association rules are applied to RF and DRF to 

interpret the models. This study compares the extracted rules based on the rule quality measures. Moreover, 

this study also applies the association rules method to the empirical data. 

 

METHODS 

Data 

The data used consists of simulation data and empirical data. Simulation data is used to evaluate the 

performance of RF and DRF from the view points of model interpretability. Simulated data is generated 
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with a number of classes for the response variable (𝑌) is 2 and the number of predictors is 4 (𝑋1, 𝑋2, 𝑋3, 𝑋4). 
𝑋1 is continuous data generated from uniform distribution in the interval [0,1]. 𝑋2, 𝑋3, and 𝑋4 are nominal 

data, each consisting of 5 categories, 4 categories, and 2 categories, respectively. 𝑋2, 𝑋3, and 𝑋4 are 

generated from discrete uniform distribution. Furthermore, 𝑋2, 𝑋3, and 𝑋4 are converted into dummy 

variables for identifying the contribution of each category to the response. For illustration, 𝑋2 is divided 

into 𝐷22, 𝐷23, 𝐷24, 𝐷25 with reference category is 𝑋2 = 1. 𝐷24 is assigned a coefficient equal to 2 and 𝐷25 

is assigned a coefficient equal to 3, while 𝐷22 and 𝐷23 is assigned a coefficient equal to 0. The coefficient 

indicates that 𝑋2 = (4,5) has a higher contribution to being classified as 𝑌 = 1 than  𝑋2 = (1,2,3). This is 

applicable for other predictors. 

 

Table 1. Description of predictors 

Predictors 
Dummy 

Variable 
Category Coefficient 

Effect on 

𝐘 = 𝟏 
Description 

𝑋1 - - 3 Has effect Continuous data 

𝑋2 𝐷22 𝑋2 = 2 0 No effect Nominal data with the reference category 

𝑋2 = 1 
 𝐷23 𝑋2 = 3 0 No effect 

 𝐷24 𝑋2 = 4 2 Has effect 

 𝐷25 𝑋2 = 5 3 Has effect 

𝑋3 𝐷32 𝑋3 = 2 0 No effect Nominal data with the reference category 

𝑋3 = 1 
 𝐷33 𝑋3 = 3 2 Has effect 

 𝐷34 𝑋3 = 4 3 Has effect 

𝑋4 𝐷42 𝑋4 = 2 0 No effect 
Nominal data with the reference category 

𝑋4 = 1 

 

The simulation data used in this study is 5,000 observations with the equation of 𝑋1, 𝑋2, 𝑋3, 𝑋4 follows: 

𝑧 = −3.5 + 3𝑋1 +  0𝐷22 + 0𝐷23 + 2𝐷24 + 3𝐷25 + 0𝐷32 + 2𝐷33 + 3𝐷34 + 0𝐷42 (1) 

Then, the response (𝑌) is generated from the Bernoulli distribution based on the probability values 

calculated from the following equation: 

𝑃(𝑌 = 1)  =
exp (𝑧)

1 + exp (𝑧)
 (2) 

Data generated when RF may underfit is required to DRF modelling. The dataset is obtained from RF that 

RF underfits the data. RF is underfit if the relative test accuracy of RF is less than 1 [7]. The relative test 

accuracy is the accuracy of RF when the given nodesize is divided by the accuracy of RF when the nodesize 

is set to default value 1. The nodesize used are 0,01𝑛;  0,02𝑛;  0,03 𝑛; … ;  0,09𝑛; 0,1𝑛 and 1 with 𝑛 is the 

number of the training data. Training data is used for modelling the RF while test data is used to calculate 

the relative test accuracy at each nodesize setting. If all relative test accuracy is less than 1, RF is underfit 

on simulated data. The data generation is based on trial and error until 100 underfit datasets are obtained. 

 

Empirical data is used as an implementation of the association rules method to identify the characteristics 

of the working poor in Yogyakarta. The empirical data used in this study was sourced from the National 

Socio-Economic Survey (Susenas) in 2022, collected by the Statistics Indonesia (BPS). The response used 

in this study is the poverty status of workers in Yogyakarta. Poverty status refers to the concept of both 

poverty and employment. The measurement of poverty is based on the individual's capacity to fulfill both 

food and non-food needs [16]. Meanwhile, individuals classified in the worker category are those aged 15 

and above, engaged in activities to earn or assist in earning income, for a minimum of one hour 

(consecutively) per week, or have a job but did not work due to holidays, leave, illness, etc [17]. Therefore, 

a poor worker is someone who is employed but resides in a household below the poverty line. The variables 

used are based on previous studies [18], [19]. 
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Table 2. Variables used in empirical data 

Variable Description Scale 

Poverty status of worker 1: Poor worker; 0: Non-poor worker Nominal 

Age Age of worker Ratio 

Gender 1: Male; 2: Female Nominal 

Marital status 1: Never married; 2: Married; 3: Divorce; 4: Widowed Nominal 

Educational level 
1: No education; 2: Primary school; 3: Secondary school; 

4: High school; 5: University 
Ordinal 

Place of birth 1: Yogyakarta; 2: others Nominal 

Residence of 5 years ago 1: Yogyakarta; 2: others Nominal 

Literacy ability 1: Able; 2: Unable Nominal 

Functional disability 1: Exists; 2: Not exist Nominal 

Internet use 1: Use internet; 2: Not use internet Nominal 

Job sector 

1: Agriculture; 2: Mining and quarrying; 3: Construction; 

4: Industry; 5: Electricity, gas, and water; 6: Trade, accomodation, and 
restaurants; 7: Transport and communication; 8: Other services 

Nominal 

Working hours Weekly working hours Ratio 

Employment status of worker 

1: Self-employed; 2: Employer with unpaid worker; 

3: Employer with paid worker; 4: Employee; 5: Freelancer; 6: Family 
worker/unpaid worker 

Nominal 

Proportion of working 

household member 
The proportion of working to the total household member Ratio 

Home ownership 1: Own a home; 2: others Nominal 

Access to credit 1: Has access; 2: No access Nominal 

 

Model 

RF and DRF are used as classification models. RF constructs decision trees using bootstrap sampling from 

the training data and randomly selects variables subset (𝑚 ≈ √𝑝) at each node. This step is performed 𝑘 

times to construct 𝑘 decision trees. The final prediction is obtained by aggregating the predictions from 𝑘 

decision trees through majority voting. In contrast, the DRF model uses the entire training dataset rather 

than bootstrap results. This results in more unique observations at each node, leading to larger trees 

compared to RF. DRF introduces additional randomness into the tree-building process through bootstrap 

sampling and random variable selection at each node. The process is carried out until 𝑘 decision trees are 

obtained. Aggregating the predictions of 𝑘 decision trees uses majority voting to obtain the final prediction 

for the response variable class. 

 

As an illustration, consider simulated data where the response variable (𝑌) takes on values of either class 1 

or 0, and the explanatory variables (𝑋) include 𝑋1, 𝑋2, 𝑋3, and 𝑋4. The illustration of the classification 

models RF and DRF for predicting the response variable classes 𝑌 = 1 or 𝑌 = 0 is presented in Figures 1 

and 2. 

 

Figure 1. Illustration of RF model 
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Figure 2. Illustration of DRF model 

 

Classification analysis using RF and DRF is carried out by constructing 500 trees. Each tree will predict 

the probability of a data being classified into the 𝑗 class. The final class prediction is aggregating of 500 

trees by taking majority vote. 𝐶𝐵(𝑥) is the final prediction of class response based on predictors (𝑥). 𝑏 is 

the index of the tree 𝑏 =  1, … ,500. 𝑗 is the response class, 𝑗 =  0,1. 𝐼(𝐶𝑏(𝑥)  =  𝑗) is an indicator 

function, which is 1 if the tree predicts class 𝑌 = 1 or 𝑌 = 0, 0 otherwise. 

𝐶𝐵(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗∑ 𝐼(𝐶𝑏(𝑥) = 𝑗)
500

𝑏=1
, 𝑗 = 0,1 (3) 

Next, rules are extracted from each tree in the RF and DRF models. The combination of rules from multiple 

trees is converted into if-then form. 

 

Rule extraction 

The inTrees approach [12] utilizes association rule techniques to explain the relationships between 

predictors and response variable in ensemble tree models. This approach involves extracting rules from 

each decision tree, identifying combinations of variables with their most frequent values, and assessing the 

quality of the extracted rules. The objective of this approach is to provide information that is more easily 

understood and interpreted. 

 

Ensemble tree is a set of 𝑘 decision tree. Figure 3 illustrates a decision tree of an ensemble tree. Each node 

represents splitting and paths from the root node to the leaf node [20]. The tree in Figure 3 has five leaf 

nodes, so there are five paths from the root node to leaf nodes 1 to 5. The following paths from the root 

node to the leaf node yield rules that identify the relationship between predictors and response. Accordingly, 

each decision tree in ensemble tree model will have different number of rules due to the number of rules 

extracted depending on the number of leaf nodes generated in each decision tree. 

Rules are generally expressed as X ⇒ Y. X is the condition and Y is the prediction. Based on Figure 3, the 

rules extracted from the decision tree are as follows: 

1. The first leaf node has a rule {𝑋1 = 5, 𝑋2 = 4, dan 𝑋3 = 1 ⇒ 𝑌 = 1} 

2. The second leaf node has a rule {𝑋1 = 5, 𝑋2 = 4, dan 𝑋3 = 2 ⇒ 𝑌 = 0} 

3. The third leaf node has a rule {𝑋1 = 5 dan 𝑋2 = 3 ⇒ 𝑌 = 1} 

4. The fourth leaf node has a rule {𝑋1 = 1 dan 𝑋4 > 0,5 ⇒ 𝑌 = 1} 

5. The fifth leaf node has a rule {𝑋1 = 1 dan 𝑋4 ≤ 0,5 ⇒ 𝑌 = 0} 
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Figure 3. Structure of decision tree 

 

The metrics used to measure the quality of rules include support and confidence values. Support indicates 

the proportion of occurrences of the combination of X and Y in the dataset, while confidence indicates how 

often Y appears in rules containing X (Han et al., 2012). In terms of model interpretation, support is defined 

as the percentage of rules appearing in the trees generated by the RF and DRF models. Confidence 

represents the accuracy level of a rule in correctly predicting the class of the response variable. High support 

implies that a rule frequently appears in the trees formed by the model and high confidence indicates that 

the rule is able to correctly predict the class of the response variable. 

 

Data analysis procedure 

The following are the stages of analysis in this study: 

1. For simulated data, simulated data is generated according to the simulation data procedure when 

RF is underfit. For empirical data, the data preprocessing is conducted by classifying the status of 

the working poor according to the BPS definition and regrouping the categorical variables. 

Identification of the possibility that RF is underfit is carried out on empirical data. 

2. Divide the data into two parts, 80% training data and 20% test data. The simulation data consists 

of 5,000 observations, divided into training data with 4,000 observations and test data with 1,000 

observations. Meanwhile, the empirical data comprises 6,520 observations, with training data 

consisting of 5,216 observations and test data consisting of 1,304 observations. Specifically for 

empirical data, balancing of the training data is performed using SMOTE-NC and the 

identification of the RF model resulting in an underfit model. 

3. RF and DRF modelling utilizes the training data. For simulation data, the parameters used are 

default. For empirical data, the parameters used are the results of hyperparameter tuning using 10-

fold cross validation. 

4. Conducting the performance evaluation of predictions by calculating AUC values on the test data. 

5. Extracting rules from each tree formed in RF and DRF models. 

6. In the simulation data, the process is carried out on 100 underfit datasets. The purpose is to evaluate 

the interpretability performance of RF and DRF models based on the support and confidence 

values. For empirical data, model interpretation uses the best model. The rules extraction involves 

identifying frequent variable interactions and analyzing the rules based on support and confidence 

values. 

 

RESULTS AND DISCUSSIONS  

Simulation study 

Modelling using simulated data selected in such a way as to reflect RF conditions results in underfit models. 

The underfit data was used to build the model because the use of DRF provides good accuracy when the 

RF is underfitting [7]. In modeling simulated data, the parameters set are default values. In general, default 

values result in good model performance [23]. RF and DRF modeling and rule extraction were performed 

on 100 underfit datasets. The modeling results show that the RF model produces an AUC of 96.64% and 

DRF produces an AUC of 96.69%. Then, the results of the paired t-test on the AUC value show a p-value 

of less than 0.05 in the underfit simulation data (Table 3). This means that there is a significant difference 
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in the average AUC value between RF and DRF. Although the difference in AUC value between RF and 

DRF is very small, DRF shows better prediction performance than RF on the underfit datasets. 

Table 3. The model performance of simulated underfit datasets 

Model AUC 𝒙̅𝒅 t-statistic p-value 

DRF 96.69% 
0,052 2,26 0,026* 

RF 96.64% 

*Significant at 0.05 

 

After RF and DRF modelling, rules are extracted from 500 trees formed in RF and DRF. From the extracted 

rules, there are 67 identical rules from all 100 underfit datasets. Then, the most frequent variable interaction 

is measured based on support and confidence values. The support value is the percentage of occurrence of 

a rule in the tree formed in the model, while the confidence value shows the accuracy of the prediction 

results of a rule. 

 

The support and confidence values of the 100 datasets when RF is underfit were analysed using paired t-

test. This test is to determine the significant difference of RF and DRF performance in terms of model 

interpretability using association rules. The null hypothesis is that the RF and DRF do not have significantly 

different performance based on rule quality metrics. The alternative hypothesis tested is that both models 

have significantly different performance in terms of model interpretability. 

 

Table 4. Comparison of RF and DRF based on support and confidence values 

Rule Condition Pred 

Support Confidence 

𝒙̅𝒅 p-value 
DRF 

vs RF 
𝒙̅𝒅 p-value 

DRF 

vs RF 

1 0,15 < 𝑋1 ≤ 0,85 & 

𝑋3 = 4 

1 -0,002  0,000* 
RF 

 0,000  - 
- 

2 𝑋1 ≤ 0,15 & 𝑋2 = (1,2,3) 0  0,002  0,000* DRF  0,000  - - 

3 𝑋1 ≤ 0,15 & 𝑋3 = (1,2) 0  0,001  0,000* DRF  0,000  - - 

4 𝑋2 = 5 & 𝑋3 = (3,4) 1  0,001  0,002* DRF -0,000   0,320 - 

5 𝑋2 = (4,5) & 𝑋3 = 4 1  0,002  0,000* DRF  0,000   0,158 - 

6 𝑋2 = 5 & 𝑋3 = 3 1  0,002  0,000* DRF  0,000   0,940 - 

7 𝑋2 = 4 & 𝑋3 = 4 1  0,003  0,000* DRF -0,000   0,606 - 

8 𝑋2 = (4,5) & 𝑋3 = 3 1  0,002  0,000* DRF -0,002   0,209 - 

9 𝑋2 = 4 & 𝑋3 = (3,4) 1  0,001  0,000* DRF  0,000   0,986 - 

10 𝑋2 = 4 & 𝑋3 = 3 1  0,001  0,000* DRF -0,002   0,243 - 

11 𝑋1 > 0,15 & 𝑋2 = 5 & 

𝑋4 = 1 

1 -0,002  0,000* 
RF 

 0,012   0,000* 
DRF 

12 𝑋1 > 0,15 & 𝑋2 = 5 1 -0,003  0,000* RF  0,009   0,000* DRF 

13 𝑋1 > 0,15 & 𝑋3 = 4 & 

𝑋4 = 2 

1 -0,002  0,000* 
RF 

 0,010   0,001* 
DRF 

14 𝑋1 > 0,15 & 𝑋3 = 4 1 -0,004  0,000* RF  0,013   0,000* DRF 

15 𝑋1 > 0,15 & 𝑋3 = 4 & 

𝑋4 = 1 

1 -0,003  0,000* 
RF 

 0,011   0,000* 
DRF 

16 𝑋2 = (1,2,3) & 𝑋3 = 3 0  0,002  0,000* DRF  0,002   0,024* DRF 

17 𝑋2 = 4 & 𝑋3 = (1,2) 0  0,001  0,035* DRF  0,003   0,007* DRF 

18 𝑋1 ≤ 0,85 & 𝑋2 = 5 1 -0,003  0,000* RF  0,016   0,000* DRF 

19 𝑋1 ≤ 0,75 & 𝑋2 = 5 1  0,002  0,000* DRF  0,006   0,056 - 

20 𝑋1 ≤ 0,85 & 𝑋3 = 4 1 -0,002  0,000* RF  0,011   0,000* DRF 

21 𝑋2 = 5 & 𝑋4 = 2 1 -0,002  0,000* RF  0,011   0,000* DRF 

22 𝑋2 = 5 1  0,000  0,977  -  0,012   0,000* DRF 

23 𝑋2 = 5 & 𝑋4 = 1 1 -0,001  0,000* RF  0,015   0,000* DRF 

24 𝑋2 = 4 & 𝑋4 = 2 1 -0,001  0,000* RF  0,012   0,000* DRF 

25 𝑋3 = 4 1  0,000  0,775  -  0,013   0,000* DRF 

26 𝑋3 = 4 & 𝑋4 = 1 1 -0,002  0,000* RF  0,013   0,000* DRF 

27 𝑋1 ≤ 0,75 & 𝑋3 = (1,2) 0  0,003  0,000* DRF -0,006   0,090 - 

28 𝑋1 ≤ 0,15 & 𝑋4 = 1 0  0,000  0,272 -  0,004   0,203 - 

29 𝑋1 ≤ 0,15 0  0,002  0,000* DRF  0,000   0,783 - 

*Significant at 0.05 
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Table 4. Comparison of RF and DRF based on support and confidence values (cont.) 

Rule Condition Pred. 

Support Confidence 

𝒙̅𝒅 p-value 
DRF 

vs RF 
𝒙̅𝒅 p-value 

DRF 

vs RF 

30 0,15 ≤ 𝑋1 ≤ 0.75 0  0,001  0,001* DRF -0,002   0,525 - 

31 𝑋1 ≤ 0,15 & 𝑋4 = 2 0  0,000  0,188 -  0,003   0,139 - 

32 𝑋1 ≤ 0,75 & 𝑋2 = (1,2,3) 0  0,002  0,000* DRF -0,002   0,415 - 

33 0,75 < 𝑋1 ≤ 0,85 1  0,000  0,620 -  0,004   0,207 - 

34 𝑋1 ≤ 0,75 & 𝑋3 = (1,2,3) 0  0,000  0,308 - -0,005   0,098 - 

35 𝑋1 > 0,75 & 𝑋3 = (1,2) 1  0,001  0,015* DRF -0,005   0,119 - 

36 𝑋2 = (1,2,3,4) & 𝑋3 = 3 0 -0,000  0,628 - -0,002   0,276 - 

37 𝑋2 = (4,5) 1  0,005  0,000* DRF  0,010   0,000* DRF 

38 𝑋1 ≤ 0,75 & 𝑋2 = (1,2,3,4) 0  0,001  0,154 - -0,006   0,062 - 

39 𝑋3 = (1,2) & 𝑋4 = 1 0  0,001  0,016* DRF -0,001   0,852 - 

40 𝑋3 = (1,2) 0  0,005  0,000* DRF  0,003   0,191 - 

41 𝑋3 = (1,2) & 𝑋4 = 2 0  0,001  0,000* DRF  0,006   0,116 - 

42 𝑋2 = (1,2,3) & 𝑋4 = 1 0  0,001  0,000* DRF  0,002   0,563 - 

43 𝑋2 = (1,2,3)  0  0,006  0,000* DRF  0,002   0,379 - 

44 𝑋2 = (1,2,3) & 𝑋4 = 1 0  0,001  0,000* DRF  0,002   0,609 - 

45 𝑋1 > 0,75 & 𝑋2 = (1,2,3) 1  0,002  0,000* DRF -0,003   0,310 - 

46 𝑋3 = (1,2,3) & 𝑋4 = 2 0 -0,001   0,001* RF  0,009   0,074 - 

47 𝑋3 = (1,2,3)  0 -0,001   0,067 -  0,007   0,021* DRF 

48 𝑋3 = (1,2,3) & 𝑋4 = 1 0 -0,001   0,000* RF  0,009   0,066 - 

49 𝑋1 > 0,75  1  0,001   0,226 -  0,002   0,190 - 

50 𝑋3 = (3,4) 1  0,003   0,000* DRF  0,008   0,026* DRF 

51 𝑋1 ≤ 0,45 0  0,002   0,006* DRF -0,013   0,000* RF 

52 0,45 ≤ 𝑋1 ≤ 0,75 0  0,001   0,041* DRF -0,021   0,000* RF 

53 𝑋1 > 0,75 & 𝑋3 = 3 1  0,001   0,001* DRF -0,004   0,056 - 

54 𝑋2 = 4 & 𝑋3 = (1,2,3) 0 -0,004   0,000* RF -0,001   0,633 - 

55 0,85 < 𝑋1 ≤ 0,95 1 -0,001   0,001* RF  0,002   0,558 - 

56 𝑋2 = (1,2,3,4) & 𝑋4 = 1 0  0,001   0,036* DRF -0,003   0,616 - 

57 𝑋2 = (1,2,3,4) 0  0,002   0,001* DRF -0,001   0,697 - 

58 𝑋2 = (1,2,3,4) & 𝑋4 = 2 0  0,001   0,000* DRF  0,005   0,350 - 

59 𝑋1 > 0,15 & 𝑋2 = (1,2,3) 0  0,003   0,000* DRF  0,009   0,035* DRF 

60 𝑋1 > 0,15 & 𝑋3 = (1,2,3) 0  0,000   0,511 -  0,001   0,910 - 

61 𝑋1 > 0,75 & 𝑋3 = (1,2,3) 1 -0,002   0,000* RF -0,004   0,317 - 

62 𝑋1 ≤ 0,45 & 𝑋3 = 3 0  0,000   0,237 - -0,007   0,050* RF 

63 𝑋1 ≤ 0,15 & 𝑋3 = 4 1  0,000   0,314 - -0,001   0,514 - 

64 𝑋1 ≤ 0,65 0 -0,001   0,033* RF -0,018   0,001* RF 

65 𝑋1 ≤ 0,75 & 𝑋4 = 1 0  0,001   0,080 - -0,005   0,137 - 

66 𝑋1 ≤ 0,75  0  0,005   0,000* DRF -0,007   0,000* RF 

67 𝑋1 ≤ 0,75 & 𝑋4 = 2 0  0,001   0,006* DRF -0,001   0,796 - 

*Significant at 0.05 
 

Table 4 shows the statistical testing results based on the support values from the RF and DRF models. Of 

the 67 corresponding rules, the difference in support values were analysed to evaluate the performance of 

RF and DRF. A positive difference in support value (𝑥̅𝑑) between DRF and RF indicates that the 

interpretability of the DRF model is better than RF and vice versa. DRF outperforms RF based on the 

support value based on 35 rules formed which implies that 52.24% of the rules are positive and significant. 

On the contrary, RF outperforms DRF only for 18 corresponding rules. This shows that the rules that 

extracted from DRF model appear more frequently compared to RF. 

 

Furthermore, the rules formed in the model on underfit datasets are also evaluated based on the confidence 

values. Most of the confidence value differences of the rules do not show significant differences between 

RF and DRF (Table 4). Within the 67 corresponding rules, there are 19 rules with significantly positive 

confidence, while only 5 RF extracted rules are negative and significant. This indicates that the rules 

extracted from RF and DRF tend to have similar predictive accuracy in correctly predicting the response 

variable class on underfit datasets. 
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Nevertheless, the rules extracted from RF and DRF should be supported by substantial evidence indicating 

the accuracy of these rules. The support value becomes a crucial metric, reflecting how frequently a rule 

appears in the trees formed within the model. From the earlier analysis regarding support values, the 

majority of rules extracted from DRF exhibit higher support values compared to RF on underfit datasets. 

This suggests that rules extracted from DRF are more reliable in explaining the relationship between the 

predictors and the response variable than rules extracted from RF. Overall, DRF demonstrates superior 

performance over RF in interpreting the model based on support and confidence values on underfit data. 

 

 
Figure 4. Summary of rule quality measures 

 

Empirical study 

Empirical data regarding the working poor in Yogyakarta consists of 6,520 observations, with the response 

variable classifying individuals into poor workers and non-poor workers. In Table 5, the proportion of 

worker poverty status indicates that the percentage of poor workers in Yogyakarta is 10.25% of the total 

observations. This condition indicates data imbalance, thus requiring a balancing process using the 

Synthetic Minority Oversampling Technique Nominal-Continuous (SMOTE-NC) on the training data. 

SMOTE-NC is applied to dataset that consist of both categorical and continuous variables [24]. Synthetic 

data for continuous variables is generated by randomly selecting k nearest neighbors and calculating the 

Euclidean distance. Synthetic observations are then created along the straight line connecting minority 

observations and the selected nearest neighbors. Synthetic data for categorical variables is generated based 

on the most frequent category among the k-nearest neighbors. 

 

Table 5. Proportion of worker poverty status data in Yogyakarta 

Poverty status of worker Proportion 

Poor workers 0.1025 

Non-poor workers 0.8975 

 

Identification of RF producing an underfit model is conducted prior to constructing the classification model. 

The procedural steps involve calculating the accuracy value on the test set, similar to the approach used in 

the simulation data. The relative test accuracy of the RF for all given nodesize is less than 1. This implies 

that RF underfits the empirical data of Yogyakarta. Therefore, DRF is applicable to the empirical data to 

improve the performance of RF. Afterwards, hyperparameter tuning is carried out before modelling DRF. 

The process of selecting optimal parameter values is to achieve the most accurate performance [25]. The 

hyperparameters used in DRF are nodesize (minimum number of observations in a leaf node) and number 

of trees. The combinations of nodesize used in the modeling are 5, 6, 7, 8, 9, and 10, while the combinations 

of the number of trees used in the modeling are 500 and 1000. The optimal parameter values obtained from 

10-fold cross validation are 1,000 trees and nodesize equal to 1. These parameters are then used for 

modelling the DRF. 
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Furthermore, model evaluation is conducted using test data to obtain AUC, sensitivity, and specificity 

values (Table 6). The AUC value is 73.85%. This indicates that the DRF model performs quite well in 

classifying poor workers in Yogyakarta [26]. In addition to the AUC value, sensitivity, and specificity 

values are also considered in evaluating the predictive performance of a model. The sensitivity value shows 

that 75.48% of poor workers in DI Yogyakarta are predicted as poor workers. The specificity value indicates 

that 68.67% of non-poor workers in DI Yogyakarta are predicted as non-poor workers. 

 

Table 6. The model performance of DRF model on working poor dataset 
Data AUC Sensitivity Specificity 

Training data 79.67% 80.36% 79.54% 

Test data 73.85% 75.48% 68.67% 

 

After modelling the DRF, rules are extracted from 1,000 trees The rule extraction from the model resulted 

in 45,859 rules. Out of these, 206 frequently occurring rules explain interactions between variables. Among 

these rules, 151 predict poor workers, while 55 predict non-poor workers. 

 

Table 7. Characteristics of the working poor in Yogyakarta based on the top 5 highest support 

Rule 
Working 

hours 

Place of 

birth 

Proportion 

of working 

household 

member 

Marital 

Residence 

of 5 years 

ago 

Job sector 
Access to 

credit 
Sup Conf 

1 ≤ 34,5 Yogyakarta - - - - - 0.03 0.97 

2 ≤ 34,5 Yogyakarta ≤ 0,65 - - - - 0.02 0.97 

3 - Yogyakarta ≤ 0,65 Married - - - 0.02 0.98 

4 - - ≤ 0,65 - Others - - 0.02 1.00 

5 - - - - - Industry No access 0.02 1.00 

 

Table 7 describes interactions between variables that frequently occur based on the top 5 highest support 

values with confidence above 95%. The confidence value represents the accuracy of the rules in predicting 

poor workers. The support value is the percentage of rule occurrences in the trees formed within the model. 

Here are the characteristics of workers classified as poor in Yogyakarta: 

1. If someone works less than or equal to 34.5 hours per week and was born in Yogyakarta, then they 

are predicted as poor workers. A support of 0.03 indicates that this rule appears in 30 trees out of 

1,000 trees created in the model, with a rule accuracy of 97% (𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 0.97). 

2. If someone works less than or equal to 34.5 hours per week, was born in Yogyakarta, and the 

proportion of working household member is less than or equal to 0.65, then they are predicted as 

poor workers. A support of 0.02 indicates that this rule appears in 20 trees out of 1,000 trees created 

in the model, with a rule accuracy of 97%. 

3. If someone was born in Yogyakarta, the proportion of working household member is less than or 

equal to 0.65, and the marital status is married, then they are predicted as poor workers. A support 

of 0.02 indicates that this rule appears in 20 trees out of 1,000 trees created in the model, with a 

rule accuracy of 98%. 

4. If the proportion of working household member is less than or equal to 0.65 and did not live in 

Yogyakarta 5 years ago, then they are predicted as poor workers. A support of 0.02 indicates that 

this rule appears in 20 trees out of 1,000 trees created in the model, with a rule accuracy of 100%. 

5. If someone works in the industrial sector and does not have access to credit, then they are predicted 

as poor workers. A support of 0.02 indicates that this rule appears in 20 trees out of 1,000 trees 

created in the model, with a rule accuracy of 100%.  

 

CONCLUSION 

The results of the simulation study indicate that the DRF model outperforms the RF model in predicting 

underfit simulation data. Further analysis was conducted by extracting rules from both the RF and DRF 

models. DRF demonstrates superior performance compared to RF in underfit simulation data in terms of 

model interpretation based on the support and confidence values of the generated rules. The analysis related 

to model interpretation based on support and confidence values provides a deeper understanding of the 

superiority of DRF over RF in terms of accurate prediction and stronger interpretation of the relationship 
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between explanatory and response variables. The results of the empirical study reveal that the most frequent 

variable interactions in predicting poor workers in Yogyakarta is the working hours of employees less than 

the normal working hours (35 hours per week) and being born in Yogyakarta. 
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