Classification of White Blood Cell Abnormalities for Early Detection of Myeloproliferative Neoplasms Syndrome Based on K-Nearest Neighborr

Zilvanhisna Emka Fitri(1), Lindri Nalentine Yolanda Syahputri(2), Arizal Mujibtamala Nanda Imron(3),


(1) Politeknik Negeri Jember
(2) Politeknik Negeri Jember
(3) Universitas Jember

Abstract

The myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell disorders characterized by dysregulated proliferation and expansion of one or more of the myeloid lineages. The initial symptoms of MPN is a bone marrow abnormalities when producing red blood cells, white blood cells and platelets in large numbers and uncontrolled. An automatic and accurate white blood cell abnormality classification system is needed. This research uses digital image processing techniques such as conversion to the modified CIELab color space, segmentation techniques based on threshold values and feature extraction processes that produce four morphological features consisting of area, perimeter, metric and compactness. then the four features become input to the K-Nearest Neighborr (KNN) method. The testing process is based on variations in the value of K to get the best accuracy percentage of 94.3% tested on 159 test data.

Keywords

MPNs; WBC Abnormalities; CIELab; Thresholding; KNN

Full Text:

PDF

References

S. Verstovsek and A. Tefferi, Eds., Myeloproliferative Neoplasms. Totowa, NJ: Humana Press, 2011.

S. B. McKenzie, Clinical laboratory hematology. Harlow: Pearson, 2014.

B. J. Bain, Blood Cells - A Practical Guide, Fifth. United KIngdom: John Wiley & Sons Ltd., 2015.

D. R. Fifin, “PENGENALAN POLA CITRA LEUKOSIT DENGAN METODE EKSTRAKSI FITUR CITRA,†p. 5, 2010.

D.-C. Huang, K.-D. Hung, and Y.-K. Chan, “A computer assisted method for leukocyte nucleus segmentation and recognition in blood smear images,†Journal of Systems and Software, vol. 85, no. 9, pp. 2104–2118, Sep. 2012, doi: 10.1016/j.jss.2012.04.012.

M. N. Khasanah, A. Harjoko, and I. Candradewi, “Klasifikasi Sel Darah Putih Berdasarkan Ciri Warna dan Bentuk dengan Metode K-Nearest Neighbor (K-NN),†IJEIS, vol. 6, no. 2, p. 151, Oct. 2016, doi: 10.22146/ijeis.15254.

I. Susilawati, “IDENTIFIKASI PENYAKIT LEUKIMIA AKUT PADA CITRA DARAH MIKROSKOPIS,†vol. 12, no. 1, p. 6, 2016.

Z. E. Fitri, I. K. E. Purnama, E. Pramunanto, and M. H. Pumomo, “A comparison of platelets classification from digitalization microscopic peripheral blood smear,†in 2017 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Aug. 2017, pp. 356–361, doi: 10.1109/ISITIA.2017.8124109.

Refbacks

  • There are currently no refbacks.




Scientific Journal of Informatics (SJI)
p-ISSN 2407-7658 | e-ISSN 2460-0040
Published By Department of Computer Science Universitas Negeri Semarang
Website: https://journal.unnes.ac.id/nju/index.php/sji
Email: [email protected]

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.