Diagnosis of Lung Disease Using Learning Vector Quantization 3 (LVQ3)

Dwi Marisa Midyanti(1),


(1) Tanjungpura University

Abstract

Lung disease is one of the diseases with the highest number of patients in Indonesia. Lung disease is a disease with many types and symptoms that are almost the same as each other. This study uses an artificial neural network Learning Vector Quantization 3 (LVQ3), to diagnose lung disease. The data used in this study were 113 medical records, with seven types of lung disease, and 27 symptoms of the disease. From the experimental results, the best LVQ3 parameters from this study are using m = 0.15, and the learning rate = 0.15. LVQ3 produces the best accuracy value for training data at 87.5% of 80 data, and accuracy for test data 88% of 33 data.

Keywords

Lung disease diagnosis, Neural Network, LVQ3

Full Text:

PDF

References

Rahmawati, E., & Wibawanto, H. (2016). Sistem Pakar Diagnosis Penyakit Paru-Paru Menggunakan Metode Forward Chaining. Jurnal Teknik Elektro, 8(2), 64-49.

Sumiati, Badriyah, R., & Ariyani, A. (2017). Sistem Pakar Untuk Diagnosa Penyakit Paru - Paru Menggunakan Metode Certainty Factor Di Puskesmas Citangkil. Jurnal ProTekInfo, 4, 34-42.

Iqbal, M., Setyaningsih, F., & Bahri, S. (2019). Implementasi Metode Certainty Factor Dalam Sistem Pakar Diagnosis Penyakit Paru-paru Berbasis Android. Coding : Jurnal Komputer dan Aplikasi, 7(3), 155-164.

Kusumadewi, S. (2004). Membangun Jaringan Syaraf Tiruan Menggunakan MATLAB & EXCEL LINK. Yogyakarta: Graha Ilmu.

Fausett, L. V. (1994). Fundamentals of neural networks: Architectures, algorithms, and applications. Englewood Cliffs, NJ: Prentice-Hall.

Putra, F., & Syafria, F. (2018). Penerapan Learning Vector Quantization 3 (LVQ3) untuk Mengidentifikasi Citra Darah Acute Lymphoblastic Leukemia (ALL) dan Acute Myeloid Leukemia (AML). CoreIT, 4(1), 27-33.

Tukur, U., & Shamsuddin, S. (2015). Radial Basis Function Network Learning with Modified Backpropagation Algorithm. TELKOMNIKA Indonesian Journal of Electrical Engineering, 13(2), 369 – 378.

Refbacks

  • There are currently no refbacks.




Scientific Journal of Informatics (SJI)
p-ISSN 2407-7658 | e-ISSN 2460-0040
Published By Department of Computer Science Universitas Negeri Semarang
Website: https://journal.unnes.ac.id/nju/index.php/sji
Email: [email protected]

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.