Model for Identification and Prediction of Leaf Patterns: Preliminary Study for Improvement

Ari Muzakir(1), Usman Ependi(2),


(1) Universitas Bina Darma
(2) Universitas Bina Darma

Abstract

Purpose: Many studies have conducted studies related to automation for image-based plant species identification recently. Types of plants, in general, can be identified by looking at the shape of the leaves, colors, stems, flowers, and others. Not everyone can immediately recognize the types of plants scattered around the environment. In Indonesia, herbal plants thrive and are abundantly found and used as a concoction of traditional medicine known for its medicinal properties from generation to generation. In the current Z-generation era, children lack an understanding of the types of plants that benefit life. This study identifies and predicts the pattern of the leaf shape of herbal plants. Methods: The dataset used in this study used 15 types of herbal plants with 30 leaf data for each plant to obtain 450 data used. The extraction process uses the GLCM algorithm, and classification uses the K-NN algorithm. Result: The results carried out through the testing process in this study showed that the accuracy rate of the leaf pattern prediction process was 74% of the total 15 types of plants used. Value: Process of identifying and predicting leaf patterns of herbal plants can be applied using the K-NN classification algorithm combined with GLCM with the level of accuracy obtained.

Keywords

Leaf Pattern Prediction; GLCM Algorithm; K-NN Algorithm; Identification of Herbal Plants

Full Text:

PDF

References

F. S. Ni’mah and T. Sutojo, “Identifikasi tumbuhan obat herbal berdasarkan citra daun menggunakan algoritma gray level co-occurence matrix dan k-nearest neighbor,” Jurnal Teknologi dan Sistem Komputer, vol. 6, no. 2, pp. 51–56, 2018.

M. E. Chowdhury et al., “Automatic and reliable leaf disease detection using deep learning techniques,” AgriEngineering, vol. 3, no. 2, pp. 294–312, 2021.

S. Nandhini, S. Parthasarathy, A. Bharadwaj, and K. H. Vardhan, “Analysis on classification and prediction of leaf disease using deep neural network and image segmentation technique,” Ann. Rom. Soc. Cell Biol., vol. 25, no. 6, pp. 9035–9041, 2021.

G. Saleem, M. Akhtar, N. Ahmed, and W. S. Qureshi, “Automated analysis of visual leaf shape features for plant classification,” Comput. Electron. Agric., vol. 157, pp. 270–280, Feb. 2019.

R. R. Waliyansyah, “Identifikasi jenis biji kedelai (glycine max l) menggunakan gray level coocurance matrix (glcm) dan k-means clustering,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 1, pp. 17–26, 2020.

S. G. Wu, F. S. Bao, E. Y. Xu, Y.-X. Wang, Y.-F. Chang, and Q.-L. Xiang, “A leaf recognition algorithm for plant classification using probabilistic neural network,” in 2007 IEEE Int. Symp. Signal Process. Inf. Technol., Giza, Egypt, Dec. 2007, pp. 11–16.

S. Sabzi, R. Pourdarbani, and J. I. Arribas, “A computer vision system for the automatic classification of five varieties of tree leaf images,” Computers, vol. 9, no. 1, p. 6, 2020.

K. Yang, W. Zhong, and F. Li, “Leaf segmentation and classification with a complicated background using deep learning,” Agronomy, vol. 10, no. 11, p. 1721, 2020.

R. J. Khanjar, “DNN based plant diseases recognition using classification of leaf images,” Medico Legal Update, vol. 20, no. 4, pp. 1933–1942, 2020.

K. R. Castleman, “Digital image processing,” Pearson Education, Canada, 1993.

D. Kumar, “Feature extraction and selection of kidney ultrasound images using GLCM and PCA,” Procedia Comput. Sci., vol. 167, pp. 1722–1731, 2020.

P. Mohanaiah, P. Sathyanarayana, and L. GuruKumar, “Image texture feature extraction using GLCM approach,” Int. J. Sci. Res. Publ.s, vol. 3, no. 5, pp. 1–5, 2013.

R. M. Haralick, K. Shanmugam, and I. H. Dinstein, “Textural features for image classification,” IEEE Trans. Syst. Man Cybern., no. 6, pp. 610–621, 1973.

G. Saleem, M. Akhtar, N. Ahmed, and W. Qureshi, “Automated analysis of visual leaf shape features for plant classification,” Comput. Electron. Agric., vol. 157, pp. 270–280, 2019.

R. T. Collins, Y. Liu, and M. Leordeanu, “Online selection of discriminative tracking features,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10, pp. 1631–1643, 2005.

A. Budianto, R. Ariyuana, and D. Maryono, “Perbandingan k-nearest neighbor (k-nn) dan support vector machine (svm) dalam pengenalan karakter plat kendaraan bermotor,” J. Ilm. Pendidik. Tek. dan Kejuru., vol. 11, no. 1, pp. 27–35, 2018.

Vinita Chandani, Romi Satria Wahono, and Purwanto Purwanto, “Komparasi algoritma klasifikasi machine learning dan feature selection pada analisis sentimen review film,” J. Intell. Syst., vol. 1, no. 1, pp. 56–60, 2015.

M. Lestari, “Penerapan algoritma klasifikasi Nearest Neighbor (K-NN) untuk mendeteksi penyakit jantung,” Faktor Exacta, vol. 7, no. 4, pp. 366–371, 2015.

L. A. R. Hakim, A. A. Rizal, and D. Ratnasari, “Aplikasi prediksi kelulusan mahasiswa berbasis k-nearest neighbor (k-nn),” JTIM: J. Teknol. Inf. Dan Multimed., vol. 1, no. 1, pp. 30–36, 2019.

Refbacks





Scientific Journal of Informatics (SJI)
p-ISSN 2407-7658 | e-ISSN 2460-0040
Published By Department of Computer Science Universitas Negeri Semarang
Website: https://journal.unnes.ac.id/nju/index.php/sji
Email: [email protected]

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.