A Combination of Forward Chaining and Certainty Factor Methods for Early Detection of Fever : Dengue Hemorrhagic Fever, Malaria and Typhoid

Zilvanhisna Emka Fitri(1), Elsa Manora Ramadania(2), Nugroho Setyo Wibowo(3), I Putu Dody Lesmana(4), Arizal Mujibtamala Nanda Imron(5),


(1) Politeknik Negeri Jember
(2) Politeknik Negeri Jember
(3) Politeknik Negeri Jember
(4) Politeknik Negeri Jember
(5) Universitas Jember

Abstract

Abstract.

Purpose: Dengue Hemorrhagic and Malaria fevers are the most common arthropod-borne diseases caused by mosquito bites and they also have similar signs and symptoms. Based on the problems, the researcher makes an expert system that aims to help people early detect fever diseases. This system is expected to help and support the infectious disease prevention and control program by the Ministry of Health of the Republic of Indonesia.

Methods: This study uses an expert system with a combination of Forward Chaining and Certainty Factor to detect the symptoms of fever. Forward Chaining is a technique that begins with gathering information related to known facts, then combining rules to produce conclusions. The certainty Factor method is used to define a measure of certainty against a fact or rule and to describe the level of expert confidence in dealing with problems. There are 32 symptoms of the disease consisting of dengue fever, malaria and typhoid, it was obtained based on the literature and interviews with internal medicine specialist with 20 case datasets.

Result: Based on 20 test data, obtained one data that does not match the test results and the desired target so that the system accuracy obtained is 95%. In addition, the combination of Forward Chaining and Certainty factor has better accuracy when compared to expert systems in previous studies.

Novelty: Forward Chaining to find three rules and assigning weights to the Certainty Factor that has been set by the expert makes the combination of the two methods produce better accuracy.

Keywords

Early Detection of Fever; Forward Chaining; Certainty Factors

Full Text:

PDF

References

D. P. Kementerian Kesehatan RI, “DBD : Waspada Nyamuk Aedes Aegypti,” WARTA Ditjen P2P Kementeran Kesehatan Republik Indonesia, vol. XI, hlm. 1–36, 2019.

Dinas Kesehatan Provinsi Jawa Timur, Profil Kesehatan Provinsi Jawa Timur 2019. Surabaya: Dinas Kesehatan Provinsi Jawa Timur, 2020.

P. N. Rao dkk., “Dengue, chikungunya, and scrub typhus are important etiologies of non-malarial febrile illness in Rourkela, Odisha, India,” BMC Infect Dis, vol. 19, no. 1, 2019.

L. E. Okoror, E. O. Bankefa, O. M. Ukhureigbe, E. O. Ajayi, S. K. Ojo, dan B. Ogeneh, “Misdiagnosis of Dengue Fever and Co-infection With Malaria and Typhoid Fevers in Rural Areas in Southwest Nigeria,” In Review, preprint, 2021.

H. Hamdani, D. A. Asdedi, H. R. Hatta, A. Septiarini, N. Puspitasari, dan W. Andiyani, “Comparison of Case-Based Reasoning and Certainty Factor Methods for Dengue Diagnosis,” dipresentasikan pada 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, 2021.

A. L. Ghozali, M. I. Prakoso, dan A. A. Muin, “Penerapan Sistem Pakar Diagnosa Demam Berdarah Dengue Menggunakan Certainty Factor Methods,” insypro, vol. 2, no. 2, 2017.

Ach. Khozaimi, “Mobile Expert System for Dengue Fever Based on Certainty Factor Method,” J. Phys.: Conf. Ser., vol. 1569, 2020.

G. Salsabila, R. Arafiyah, dan F. H. Indiyah, “Sistem Pakar Diagnosa Demam Berdarah Dengue Menggunakan Metode Certainty Factor,” J-KOMA Jurnal Ilmu Komputer dan Aplikasi, vol. 1, no. 1, 2020.

E. Y. Rachmawati, B. Prasetiyo, dan R. Arifudin, “The Comparison between Bayes and Certainty Factor Method of Expert System in Early Diagnosis of Dengue Infection,” Sci. J. Informatics, vol. 5, no. 2, pp. 159–170, 2018.

Yulisman dan Monalisa, “Sistem Pakar Mendiagnosa Penyakit Demam Berdarah Dengue (Dbd) Menggunakan Metode Forward Chaining Berbasis Web,” Jurnal Ilmu Komputer, vol. 8, no. 2, pp. 34–46, 2019.

G. R. Syahputra, M. Irsan, dan I. Harsadi, “Sistem Pakar Diagnosa Penyakit Aedes Aegypti Berbasis Web,” JIMTEK : Jurnal Ilmiah Fakultas Teknik, vol. 1, no. 1, 2020.

Henderi, M. Maulana, H. L. H. S. Warnars, D. Setiyadi, dan T. Qurrohman, “Model Decision Support System For Diagnosis COVID-19 Using Forward Chaining: A Case in Indonesia,” dalam 2020 8th International Conference on Cyber and IT Service Management (CITSM), Pangkal Pinang, Indonesia, 2020.

C. P. C. Munaiseche, D. R. Kaparang, dan P. T. D. Rompas, “An Expert System for Diagnosing Eye Diseases using Forward Chaining Method,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 306, 2018.

A. P. Gusman dan H. Hendri, “Expert system to diagnose child development growth disorders with forward chaining method,” J. Phys.: Conf. Ser., vol. 1339, no. 1, 2019.

A. Sujana dan Sutrisno, “Sistem Pakar Diagnosa Demam Berdarah Dengue,” Jurnal ISU Teknologi, vol. 15, no. 2, 2020.

H. Susilo, “Sistem Pakar Metode Forward Chaining dan Certainty Factor untuk Mengidentifikasi Penyakit Pertusis Pada Anak,” RTJ, vol. 1, no. 2, 2018.

I. Astuti dan H. Sutarno, “The Expert System of Children’s Digestive Tract Diseases Diagnostic using Combination of Forward Chaining and Certainty Factor Methods,” dalam 3rd International Conference on Science in Information Technology (ICSITech), Bandung, Indonesia, 2017.

E. N. Shofia, R. R. M. Putri, dan A. Arwan, “Sistem Pakar Diagnosis Penyakit Demam: DBD, Malaria dan Tifoid Menggunakan Metode K-Nearest Neighbor – Certainty Factor,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 1, no. 5, pp. 426–435, 2017.

A. Irfan, E. Prasetyo, dan R. F. Z, “Expert System for Diagnosis of Blood Fever Disease Dengue Using The Chaining and Backward Method Certainty Factor,” Journal of Electrical Engineering and Computer Sciences, vol. 5, no. 2, pp. 825–834, 2020.

M. D. Sinaga, F. Tambunan, C. J. M. Sianturi, A. Syahputra, F. Tahel, dan S. Aliyah, “An Expert System for Diagnosing Leptospirosis Disease Using Forward Chaining and Bayes Theorem,” dalam 2019 7th International Conference on Cyber and IT Service Management (CITSM), Indonesia, 2019.

Refbacks

  • There are currently no refbacks.




Scientific Journal of Informatics (SJI)
p-ISSN 2407-7658 | e-ISSN 2460-0040
Published By Department of Computer Science Universitas Negeri Semarang
Website: https://journal.unnes.ac.id/nju/index.php/sji
Email: [email protected]

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.