Software Effort Estimation Using Logarithmic Fuzzy Preference Programming and Least Squares Support Vector Machines

Adnan Purwanto(1), Lindung Parningotan Manik(2),


(1) Computer Science Graduate Program, University of Nusa Mandiri, Indonesia
(2) National Research and Innovation Agency, Indonesia

Abstract

Purpose: Effort Estimation is a process by which one can predict the development time and cost to develop a software process or product. Many approaches have been tried to predict this probabilistic process accurately, but no single technique has been consistently successful. There have been many studies on software effort estimation using Fuzzy or Machine Learning. For this reason, this study aims to combine Fuzzy and Machine Learning and get better results.
Methods: Various methods and combinations have been carried out in previous research, this research tries to combine Fuzzy and Machine Learning methods, namely Logarithmic Fuzzy Preference Programming (LFPP) and Least Squares Support Vector Machines Machine (LSSVM). LFPP is used to recalculate the cost driver weights and generate Effort Adjustment Point (EAP). The EAP and Lines of Code values are then entered as input for LSSVM. The output results are then measured using the Mean Magnitude of Relative Error (MMRE) and Root-Mean-Square Error (RMSE). In this study, COCOMO and NASA datasets were used.
Result: The results obtained are MMRE of 0.015019 and RMSE of 1.703092 on the COCOMO dataset, while on the NASA dataset the results of MMRE are 0.007324 and RMSE are 6.037986. Then 100% of the prediction results meet the 1% range of actual effort on the COCOMO dataset, while on the NASA dataset, the results show that 89,475 meet the 1% range of actual effort and 100% meet the 5% range of actual effort. The results of this study also show a better level of accuracy than using the COCOMO Intermediate method.
Novelty: This study uses a combination of LFPP and LSSVM, which is an improvement from previous studies that used a combination of FAHP and LSSVM. The method used is also different where LFPP produces better output than FAHP and all data in the dataset is used for training and testing, whereas in previous research it only used a small part of the data.

Keywords

LFPP,LSSVM, Software Effort Estimation, COCOMO

Full Text:

PDF

References

A. B. Nassif, M. Azzeh, A. Idri, and A. Abran, “Software Development Effort Estimation Using Regression Fuzzy Models,” Comput. Intell. Neurosci., vol. 2019, pp. 1–17, Feb. 2019, doi: 10.1155/2019/8367214.

H. Azath, M. Mohanapriya, and S. Rajalakshmi, “Software Effort Estimation Using Modified Fuzzy C Means Clustering and Hybrid ABC-MCS Optimization in Neural Network,” J. Intell. Syst., vol. 29, no. 1, pp. 251–263, Feb. 2018, doi: 10.1515/jisys-2017-0121.

S. K. Sehra, Y. Singh Brar, and N. Kaur, “Applying Fuzzy-AHP for software effort estimation in data scarcity,” Int. J. Eng. Trends Technol., vol. 45, no. 1, pp. 4–9, Mar. 2017, doi: 10.14445/22315381/IJETT-V45P202.

H. Rastogi, S. Dhankhar, and M. Kakkar, “A survey on software effort estimation techniques,” in 2014 5th Int. Conf. - Conflu. Next Gener. Inf. Technol. Summit (Conflu.), Sep. 2014, pp. 826–830. doi: 10.1109/CONFLUENCE.2014.6949367.

A. Trendowicz, J. Münch, and R. Jeffery, “State of the practice in software effort estimation: A survey and literature review,” Lect. Notes Comput. Sci. (incl. subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.), vol. 4980 LNCS, pp. 232–245, 2011, doi: 10.1007/978-3-642-22386-0_18.

S. K. Sehra, Y. S. Brar, N. Kaur, and S. S. Sehra, “Software effort estimation using FAHP and weighted kernel LSSVM machine,” Soft Comput., vol. 23, no. 21, pp. 10881–10900, Nov. 2019, doi: 10.1007/s00500-018-3639-2.

Y.-M. Wang and K.-S. Chin, “Fuzzy analytic hierarchy process: A logarithmic fuzzy preference programming methodology,” Int. J. Approx. Reason., vol. 52, no. 4, pp. 541–553, Jun. 2011, doi: 10.1016/j.ijar.2010.12.004.

C. Ayca and K. Hasan, “An application of fuzzy analytic hierarchy process (FAHP) for evaluating students project,” Educ. Res. Rev., vol. 12, no. 3, pp. 120–132, Feb. 2017, doi: 10.5897/ERR2016.3065.

R. P. Kusumawardani and M. Agintiara, “Application of Fuzzy AHP-TOPSIS Method for Decision Making in Human Resource Manager Selection Process,” Procedia Comput. Sci., vol. 72, pp. 638–646, 2015, doi: 10.1016/j.procs.2015.12.173.

E. Iryanti and R. Pandiya, “Evaluating the quality of e-learning using consistent fuzzy preference relations method,” in 2016 Int. Conf. Front. Inf. Technol. (FIT), Dec. 2016, pp. 61–66. doi: 10.1109/FIT.2016.7857539.

Z. Turskis, E. K. Zavadskas, J. Antucheviciene, and N. Kosareva, “A Hybrid Model Based on Fuzzy AHP and Fuzzy WASPAS for Construction Site Selection,” Int. J. Comput. Commun. Control, vol. 10, no. 6, p. 113, Oct. 2015, doi: 10.15837/ijccc.2015.6.2078.

Y.-M. Wang, Y. Luo, and Z. Hua, “On the extent analysis method for fuzzy AHP and its applications,” Eur. J. Oper. Res., vol. 186, no. 2, pp. 735–747, Apr. 2008, doi: 10.1016/j.ejor.2007.01.050.

T. Wahyuningrum, Azhari, and Suprapto, “A Comparison of Extent Analysis and Fuzzy Preference Programming for Evaluating B2C Website Usability,” in 2018 8th IEEE Int. Conf. Control Syst. Comput. Eng. (ICCSCE), Nov. 2018, pp. 150–155. doi: 10.1109/ICCSCE.2018.8684999.

S. Dožić, T. Lutovac, and M. Kalić, “Fuzzy AHP approach to passenger aircraft type selection,” J. Air Transp. Manag., vol. 68, pp. 165–175, May 2018, doi: 10.1016/j.jairtraman.2017.08.003.

L. Mikhailov, “A Fuzzy Programming Method for Deriving Priorities in the Analytic Hierarchy Process,” J. Oper. Res. Soc., vol. 51, no. 3, p. 341, Mar. 2000, doi: 10.2307/254092.

F.-Y. Meng, Q.-X. An, C.-Q. Tan, and X.-H. Chen, “An Approach for Group Decision Making With Interval Fuzzy Preference Relations Based on Additive Consistency and Consensus Analysis,” IEEE Trans. Syst. Man Cybern. Syst., vol. 47, no. 8, pp. 2069–2082, Aug. 2017, doi: 10.1109/TSMC.2016.2606647.

C. García-Diéguez, M. Herva, and E. Roca, “A decision support system based on fuzzy reasoning and AHP–FPP for the ecodesign of products: Application to footwear as case study,” Appl. Soft Comput., vol. 26, pp. 224–234, Jan. 2015, doi: 10.1016/j.asoc.2014.09.043.

J. Rezaei, R. Ortt, and V. Scholten, “An improved fuzzy preference programming to evaluate entrepreneurship orientation,” Appl. Soft Comput., vol. 13, no. 5, pp. 2749–2758, May 2013, doi: 10.1016/j.asoc.2012.11.012.

L. Sun, Z. Ma, Y. Shang, Y. Liu, H. Yuan, and G. Wu, “Research on multi‐attribute decision‐making in condition evaluation for power transformer using fuzzy AHP and modified weighted averaging combination,” IET Gener. Transm. Distrib., vol. 10, no. 15, pp. 3855–3864, Nov. 2016, doi: 10.1049/iet-gtd.2016.0381.

M. Moayeri, A. Shahvarani, M. H. Behzadi, and F. Hosseinzadeh-Lotfi, “Comparison of Fuzzy AHP and Fuzzy TOPSIS Methods for Math Teachers Selection,” Indian J. Sci. Technol., vol. 8, no. 13, Jul. 2015, doi: 10.17485/ijst/2015/v8i13/54100.

T. Wahyuningrum, A. Azhari, and S. -, “An Extended Consistent Fuzzy Preference Relation to Evaluating Website Usability,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 9, 2019, doi: 10.14569/IJACSA.2019.0100915.

M. Salaheldin, “Solution of fuzzy analytic hierarchy process using simulation,” in PEDAC’09 Int. Conf. Prod. Eng. Des. Control, 2009, pp. 1–11. doi: 10.13140/RG.2.1.2892.3049.

T. Wahyuningrum, A. Azhari, and S. Suprapto, “Modified LFPP to Improve the Accuracy of Matrix Pairwise Comparison Consistency Index in the Usability Evaluation,” Int. J. Intell. Eng. Syst., vol. 13, no. 3, pp. 397–406, Jun. 2020, doi: 10.22266/ijies2020.0630.36.

U. I. Larasati, M. A. Muslim, R. Arifudin, and A. Alamsyah, “Improve the accuracy of support vector machine using chi square statistic and term frequency inverse document frequency on movie

| Scientific Journal of Informatics, Vol. 10, No. 1, Feb 2023

review sentiment analysis,” Sci. J. Informatics, vol. 6, no. 1, pp. 138–149, 2019.

D. Du, X. Jia, and C. Hao, “A New Least Squares Support Vector Machines Ensemble Model for Aero Engine Performance Parameter Chaotic Prediction,” Math. Probl. Eng., vol. 2016, pp. 1–8, 2016, doi: 10.1155/2016/4615903.

M. Afshin, A. Sadeghian, and K. Raahemifar, “On Efficient Tuning of LS-SVM Hyper-Parameters in Short-Term Load Forecasting: A Comparative Study,” in 2007 IEEE Power Eng. Soc. Gen. Meet., Jun. 2007, pp. 1–6. doi: 10.1109/PES.2007.385613.

R. K. Yadav, “Optimized Model for Software Effort Estimation Using COCOMO-2 Metrics with Fuzzy Logic,” Int. J. Adv. Res. Comput. Sci., vol. 8, no. 7, pp. 121–125, Aug. 2017, doi: 10.26483/ijarcs.v8i7.4113.

M. Baiquni, R. Sarno, Sarwosri, and Sholiq, “Improving the accuracy of COCOMO II using fuzzy logic and local calibration method,” in 2017 3rd Int. Conf. Sci. Inf. Technol. (ICSITech), Oct. 2017, pp. 284–289. doi: 10.1109/ICSITech.2017.8257126.

M. Oriol, J. Marco, and X. Franch, “Quality models for web services: A systematic mapping,” Inf. Softw. Technol., vol. 56, no. 10, pp. 1167–1182, Oct. 2014, doi: 10.1016/j.infsof.2014.03.012.

K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic mapping studies in software engineering,” in Proc. 12th int. conf. Eval. Assess. Softw. Eng., 2008, pp. 68–77. doi: 10.5555/2227115.2227123.

P. D. D. Dominic and H. Jati, “A comparison of Asian airlines websites quality: using a non-parametric test,” Int. J. Bus. Innov. Res., vol. 5, no. 5, p. 599, 2011, doi: 10.1504/IJBIR.2011.042451.

T. Wahyuningrum and R. Pandiya, “Logaritmic Fuzzy Preference Programming Approach for Evaluating University Ranking Optimization,” Sci. J. Inform., vol. 4, no. 1, pp. 1–7, May 2017, doi: 10.15294/sji.v4i1.6738.

T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature,” Geosci. Model Dev., vol. 7, no. 3, pp. 1247–1250, Jun. 2014, doi: 10.5194/gmd-7-1247-2014.

W. Wang and Y. Lu, “Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model,” IOP Conf. Ser. Mater. Sci. Eng., vol. 324, p. 012049, Mar. 2018, doi: 10.1088/1757-899X/324/1/012049.

J. Aczél and T. L. Saaty, “Procedures for synthesizing ratio judgements,” J. Math. Psychol., vol. 27, no. 1, pp. 93–102, Mar. 1983, doi: 10.1016/0022-2496(83)90028-7.

Refbacks

  • There are currently no refbacks.




Scientific Journal of Informatics (SJI)
p-ISSN 2407-7658 | e-ISSN 2460-0040
Published By Department of Computer Science Universitas Negeri Semarang
Website: https://journal.unnes.ac.id/nju/index.php/sji
Email: [email protected]

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.