Sentiment Analysis on Social Media Against Public Policy Using Multinomial Naive Bayes
(1) Department of Informatics, UIN Sunan Gunung Djati Bandung, Indonesia
(2) Department of Informatics, UIN Sunan Gunung Djati Bandung, Indonesia
(3) Department of Computing, Sheffield Hallam University, United Kingdom
Abstract
Purpose: The purpose of this study is to analyze text documents from Twitter about public policies in handling COVID-19 that are currently or have been determined. The text documents are classified into positive and negative sentiments by using Multinomial Naive Bayes.
Methods: In this research, CRISP-DM is used as a method for conducting sentiment analysis, starting from the business understanding process, data understanding, data preparation, modeling, and evaluation. Multinomial Naive Bayes has been applied in building classification based on text documents. The results of this study made a model that can be used in classifying texts with maximum accuracy.
Result: The results of this research are focused on the model or pattern generated by the Multinomial Naive Bayes Algorithm. The classification results of social media users' tweets against the new normal policy obtained good results with an accuracy value of 90.25%. After classifying the tweets of social media users regarding the new normal policy, the results show that more than 70% agreed and supported the new normal policy.
Novelty: This study resulted in how classification can be done with Multinomial Naive Bayes and this algorithm can work well in recognizing text sentiments that generate positive or negative opinions regarding public policies handling COVID-19. So, the research provided conclusions about the views of people around the world on new normal public policy.
Keywords
Full Text:
PDFReferences
J. A. Pacheco, “The ‘New Normal’ in Education,” Prospect. 2020 511, vol. 51, no. 1, pp. 3–14, 2020, doi: 10.1007/S11125-020-09521-X.
S. Zhang, M. J. Ventura, and H. Yang, “Network Modeling and Analysis of COVID-19 Testing Strategies,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., EMBS, 2021, pp. 2003–2006, doi: 10.1109/EMBC46164.2021.9629754.
I. Aygun, B. Kaya, and M. Kaya, “Aspect Based Twitter Sentiment Analysis on Vaccination and Vaccine Types in COVID-19 Pandemic With Deep Learning,” IEEE J. Biomed. Heal. Informatics, vol. 26, no. 5, pp. 2360–2369, 2022, doi: 10.1109/JBHI.2021.3133103.
Y. Pathak, P. K. Shukla, and K. V. Arya, “Deep Bidirectional Classification Model for COVID-19 Disease Infected Patients,” IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 18, no. 4, pp. 1234–1241, 2021, doi: 10.1109/TCBB.2020.3009859.
S. Zhang, S. Yang, and H. Yang, “Statistical Analysis of Spatial Network Characteristics in Relation to COVID-19 Transmission Risks in US Counties,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., EMBS, 2021, pp. 2278–2281, doi: 10.1109/EMBC46164.2021.9629892.
R. Jayapermana, A. Aradea, and N. I. Kurniati, “Implementation of Stacking Ensemble Classifier for Multi-class Classification of COVID-19 Vaccines Topics on Twitter,” Sci. J. Inform., vol. 9, no. 1, pp. 8–15, 2022, doi: 10.15294/sji.v9i1.31648.
D. J. Pradipta, I. N. P. Pradnyana, and T. Raharjo, “The New Normal Strategy for Project Management in Directorate General of Customs and Excise,” in 2020 3rd Int. Conf. Comput. Inform. Eng. IC2IE 2020, 2020, pp. 249–254, doi: 10.1109/IC2IE50715.2020.9274568.
R. P. Aluna, I. N. Yulita, and R. Sudrajat, “Electronic News Sentiment Analysis Application to New Normal Policy during the Covid-19 Pandemic Using Fasttext and Machine Learning,” in 2021 Int. Conf. Artif. Intell. Big Data Anal. ICAIBDA 2021, 2021, pp. 236–241, doi: 10.1109/ICAIBDA53487.2021.9689756.
D. A. Azarov, D. M. Nazarov, and Y. P. Silin, “Fuzzy Assessment of the Russian Federation Military-Industrial Complex Economic Influence in the Context of a ‘New Normal,’” in Proc. 2017 20th IEEE Int. Conf. Soft Comput. Meas. SCM 2017, 2017, pp. 856–858, doi: 10.1109/SCM.2017.7970745.
S. Yuliyanti, T. Djatna, and H. Sukoco, “Sentiment Mining of Community Development Program Evaluation Based on Social Media,” TELKOMNIKA (Telecommun. Comput. Electron. Control., vol. 15, no. 4, pp. 1858–1864, 2017, doi: 10.12928/TELKOMNIKA.V15I4.4633.
T. Shaik, X. Tao, C. Dann, H. Xie, Y. Li, and L. Galligan, “Sentiment Analysis and Opinion Mining on Educational Data: A Survey,” Nat. Lang. Process. J., vol. 2, p. 100003, 2023, doi: 10.1016/J.NLP.2022.100003.
L. Shang, H. Xi, J. Hua, H. Tang, and J. Zhou, “A Lexicon Enhanced Collaborative Network for targeted financial sentiment analysis,” Inf. Process. Manag., vol. 60, no. 2, p. 103187, 2023, doi: 10.1016/J.IPM.2022.103187.
H. Li, B. X. B. Yu, G. Li, and H. Gao, “Restaurant Survival Prediction Using Customer-Generated Content: An Aspect-Based Sentiment Analysis of Online Reviews,” Tour. Manag., vol. 96, p. 104707, 2023, doi: 10.1016/J.TOURMAN.2022.104707.
N. Leelawat et al., “Twitter Data Sentiment Analysis of Tourism in Thailand During the COVID-19 Pandemic Using Machine Learning,” Heliyon, vol. 8, no. 10, p. e10894, 2022, doi: 10.1016/J.HELIYON.2022.E10894.
H. T. Ismet, T. Mustaqim, and D. Purwitasari, “Aspect Based Sentiment Analysis of Product Review Using Memory Network,” Sci. J. Inform., vol. 9, no. 1, pp. 73–83, 2022, doi: 10.15294/SJI.V9I1.34094.
S. Fransiska, R. Rianto, and A. I. Gufroni, “Sentiment Analysis Provider By.U on Google Play Store Reviews with TF-IDF and Support Vector Machine (SVM) Method,” Sci. J. Inform., vol. 7, no. 2, pp. 203–212, Nov. 2020, doi: 10.15294/SJI.V7I2.25596.
Jumanto, M. A. Muslim, Y. Dasril, and T. Mustaqim, “Accuracy of Malaysia Public Response to Economic Factors During the Covid-19 Pandemic Using Vader and Random,” J. Inf. Syst. Explor. Res., vol. 01, no. 01, pp. 49–70, 2023.
V. Balakrishnan and W. Kaur, “String-based Multinomial Naïve Bayes for Emotion Detection among Facebook Diabetes Community,” Procedia Comput. Sci., vol. 159, pp. 30–37, 2019, doi: 10.1016/J.PROCS.2019.09.157.
V. K. Vineetha and P. Samuel, “A Multinomial Naïve Bayes Classifier for Identifying Actors and Use Cases from Software Requirement Specification documents,” in 2022 2nd Int. Conf. Intell. Technol. CONIT 2022, 2022, pp. 1–5, doi: 10.1109/CONIT55038.2022.9848290.
S. Kadam, A. Gala, P. Gehlot, A. Kurup, and K. Ghag, “Word Embedding Based Multinomial Naive Bayes Algorithm for Spam Filtering,” in Proc. - 2018 4th Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2018, 2018, pp. 1–5, doi: 10.1109/ICCUBEA.2018.8697601.
R. A. Pane, M. S. Mubarok, N. S. Huda, and Adiwijaya, “A Multi-Lable Classification on Topics of Quranic Verses in English Translation Using Multinomial Naive Bayes,” in 2018 6th Int. Conf. Inf. Commun. Technol. ICoICT 2018, 2018, pp. 481–484, doi: 10.1109/ICOICT.2018.8528777.
A. R. Susanti, T. Djatna, and W. A. Kusuma, “Twitter’s Sentiment Analysis on GSM Services using Multinomial Naïve Bayes,” TELKOMNIKA (Telecommun. Comput. Electron. Control., vol. 15, no. 3, pp. 1354–1361, 2017, doi: 10.12928/TELKOMNIKA.V15I3.4284.
L. Jiang, S. Wang, C. Li, and L. Zhang, “Structure Extended Multinomial Naive Bayes,” Inf. Sci. (Ny)., vol. 329, pp. 346–356, 2016, doi: 10.1016/J.INS.2015.09.037.
N. Shiri Harzevili and S. H. Alizadeh, “Mixture of Latent Multinomial Naive Bayes Classifier,” Appl. Soft Comput., vol. 69, pp. 516–527, 2018, doi: 10.1016/J.ASOC.2018.04.020.
P. Bermejo, J. A. Gámez, and J. M. Puerta, “Improving the Performance of Naive Bayes Multinomial in E-mail Foldering by Introducing Distribution-based Balance of Datasets,” Expert Syst. Appl., vol. 38, no. 3, pp. 2072–2080, 2011, doi: 10.1016/J.ESWA.2010.07.146.
N. Chirawichitchai, “Sentiment Classification by a Hybrid Method of Greedy Search and Multinomial Naïve Bayes Algorithm,” in Int. Conf. ICT Knowl. Eng., 2013, pp. 1–4, doi: 10.1109/ICTKE.2013.6756285.
A. Kraal, P. W. van den Broek, A. W. Koornneef, L. Y. Ganushchak, and N. Saab, “Differences in Text Processing by Low- and High-Comprehending Beginning Readers of Expository and Narrative Texts: Evidence from Eye Movements,” Learn. Individ. Differ., vol. 74, p. 101752, 2019, doi: 10.1016/J.LINDIF.2019.101752.
P. K. Jayasekara and K. S. Abu, “Text Mining of Highly Cited Publications in Data Mining,” in IEEE 5th Int. Symp. Emerg. Trends Technol. Libr. Inf. Serv. ETTLIS 2018, 2018, pp. 128–130, doi: 10.1109/ETTLIS.2018.8485261.
S. Jain, S. C. Jain, and S. Vishwakarma, “Enhanced Text Classification Methods to Improve the Performance of the Various Text Mining Processes using Rapid Miner,” in Proc. 2021 IEEE Int. Conf. Mach. Learn. Appl. Netw. Technol. ICMLANT 2021, 2021, pp. 1–5, doi: 10.1109/ICMLANT53170.2021.9690551.
T. Matsumoto, W. Sunayama, Y. Hatanaka, and K. Ogohara, “Data Analysis Support by Combining Data Mining and Text Mining,” in Proc. - 2017 6th IIAI Int. Congr. Adv. Appl. Inform. IIAI-AAI 2017, 2017, pp. 313–318, doi: 10.1109/IIAI-AAI.2017.165.
S. Bhattacharjee, D. Delen, M. Ghasemaghaei, A. Kumar, and E. W. T. Ngai, “Business and Government Applications of Text Mining & Natural Language Processing (NLP) for Societal Benefit: Introduction to the Special Issue on ‘Text Mining & NLP,’” Decis. Support Syst., vol. 162, p. 113867, 2022, doi: 10.1016/J.DSS.2022.113867.
A. Motz, E. Ranta, A. S. Calderon, Q. Adam, F. Alzhouri, and D. Ebrahimi, “Live Sentiment Analysis Using Multiple Machine Learning and Text Processing Algorithms,” Procedia Comput. Sci., vol. 203, pp. 165–172, 2022, doi: 10.1016/J.PROCS.2022.07.023.
D. Zhang, J. Hyönä, L. Cui, Z. Zhu, and S. Li, “Effects of Task Instructions and Topic Signaling on Text Processing Among Adult Readers with Different Reading Styles: An Eye-tracking Study,” Learn. Instr., vol. 64, p. 101246, 2019, doi: 10.1016/J.LEARNINSTRUC.2019.101246.
N. P. Ririanti and A. Purwinarko, “Implementation of Support Vector Machine Algorithm with Correlation-Based Feature Selection and Term Frequency Inverse Document Frequency for Sentiment Analysis Review Hotel,” Sci. J. Inform., vol. 8, no. 2, pp. 297–303, 2021, doi: 10.15294/sji.v8i2.29992.
N. Umar and M. A. Nur, “Application of Naïve Bayes Algorithm Variations On Indonesian General Analysis Dataset for Sentiment Analysis,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 4, pp. 585–590, 2022, doi: 10.29207/RESTI.V6I4.4179.
A. Falasari and M. A. Muslim, “Optimize Naïve Bayes Classifier Using Chi Square and Term Frequency Inverse Document Frequency For Amazon Review Sentiment Analysis,” J. Soft Comput. Explor., vol. 3, no. 1, pp. 31–36, 2022, doi: 10.52465/joscex.v3i1.68.
T. L. Nikmah, M. Z. Ammar, Y. R. Allatif, R. M. P. Husna, P. A. Kurniasari, and A. S. Bahri, “Comparison of LSTM , SVM , and Naive Bayes for Classifying Sexual Harassment Tweets,” J. Soft Comput. Explor., vol. 3, no. 2, pp. 131–137, 2022, doi: https://doi.org/10.52465/joscex.v3i2.85.
P. Wang, B. Xu, J. Xu, G. Tian, C. L. Liu, and H. Hao, “Semantic Expansion Using Word Embedding Clustering and Convolutional Neural Network for Improving Short Text Classification,” Neurocomputing, vol. 174, pp. 806–814, 2016, doi: 10.1016/J.NEUCOM.2015.09.096.10.1109/ETTLIS.2018.8485261.
S. Jain, S. C. Jain, and S. Vishwakarma, “Enhanced Text Classification Methods to Improve the
Performance of the Various Text Mining Processes using Rapid Miner,” in Proc. 2021 IEEE Int.
Conf. Mach. Learn. Appl. Netw. Technol. ICMLANT 2021, 2021, pp. 1–5, doi:
1109/ICMLANT53170.2021.9690551.
T. Matsumoto, W. Sunayama, Y. Hatanaka, and K. Ogohara, “Data Analysis Support by Combining
Data Mining and Text Mining,” in Proc. - 2017 6th IIAI Int. Congr. Adv. Appl. Inform. IIAI-AAI
, 2017, pp. 313–318, doi: 10.1109/IIAI-AAI.2017.165.
S. Bhattacharjee, D. Delen, M. Ghasemaghaei, A. Kumar, and E. W. T. Ngai, “Business and
Government Applications of Text Mining & Natural Language Processing (NLP) for Societal
Benefit: Introduction to the Special Issue on ‘Text Mining & NLP,’” Decis. Support Syst., vol. 162,
p. 113867, 2022, doi: 10.1016/J.DSS.2022.113867.
A. Motz, E. Ranta, A. S. Calderon, Q. Adam, F. Alzhouri, and D. Ebrahimi, “Live Sentiment
Analysis Using Multiple Machine Learning and Text Processing Algorithms,” Procedia Comput.
Sci., vol. 203, pp. 165–172, 2022, doi: 10.1016/J.PROCS.2022.07.023.
D. Zhang, J. Hyönä, L. Cui, Z. Zhu, and S. Li, “Effects of Task Instructions and Topic Signaling
on Text Processing Among Adult Readers with Different Reading Styles: An Eye-tracking Study,”
Learn. Instr., vol. 64, p. 101246, 2019, doi: 10.1016/J.LEARNINSTRUC.2019.101246.
N. P. Ririanti and A. Purwinarko, “Implementation of Support Vector Machine Algorithm with
Correlation-Based Feature Selection and Term Frequency Inverse Document Frequency for
Sentiment Analysis Review Hotel,” Sci. J. Inform., vol. 8, no. 2, pp. 297–303, 2021, doi:
15294/sji.v8i2.29992.
N. Umar and M. A. Nur, “Application of Naïve Bayes Algorithm Variations On Indonesian General
Analysis Dataset for Sentiment Analysis,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6,
no. 4, pp. 585–590, 2022, doi: 10.29207/RESTI.V6I4.4179.
A. Falasari and M. A. Muslim, “Optimize Naïve Bayes Classifier Using Chi Square and Term
Frequency Inverse Document Frequency For Amazon Review Sentiment Analysis,” J. Soft
Comput. Explor., vol. 3, no. 1, pp. 31–36, 2022, doi: 10.52465/joscex.v3i1.68.
T. L. Nikmah, M. Z. Ammar, Y. R. Allatif, R. M. P. Husna, P. A. Kurniasari, and A. S. Bahri,
“Comparison of LSTM , SVM , and Naive Bayes for Classifying Sexual Harassment Tweets,” J.
Soft Comput. Explor., vol. 3, no. 2, pp. 131–137, 2022, doi:
https://doi.org/10.52465/joscex.v3i2.85.
P. Wang, B. Xu, J. Xu, G. Tian, C. L. Liu, and H. Hao, “Semantic Expansion Using Word
Embedding Clustering and Convolutional Neural Network for Improving Short Text
Classification,” Neurocomputing, vol. 174, pp. 806–814, 2016, doi:
1016/J.NEUCOM.2015.09.096.
Refbacks
- There are currently no refbacks.
Scientific Journal of Informatics (SJI)
p-ISSN 2407-7658 | e-ISSN 2460-0040
Published By Department of Computer Science Universitas Negeri Semarang
Website: https://journal.unnes.ac.id/nju/index.php/sji
Email: [email protected]
This work is licensed under a Creative Commons Attribution 4.0 International License.