Optimization of Polynomial Functions on the NuSVR Algorithm Based on Machine Learning: Case Studies on Regression Datasets
(1) Universitas Dian Nuswantoro, Indonesia
(2) Universitas Dian Nuswantoro, Indonesia
(3) Universitas Dian Nuswantoro, Indonesia
(4) Universitas Dian Nuswantoro, Indonesia
(5) Universitas Dian Nuswantoro, Indonesia
Abstract
Purpose: Experimental studies are usually costly, time-consuming, and resource-intensive when it comes to investigating prospective corrosion inhibitor compounds. Machine learning (ML) based on the quantitative structure-property relationship model (QSPR) has become a massive method for testing the effectiveness of chemical compounds as corrosion inhibitors. The main challenge in the ML method is to design a model that produces high prediction accuracy so that the properties of a material can be predicted accurately. In this study, we examine the performance of polynomial functions in the ML-based NuSVR algorithm in evaluating the regression dataset of corrosion inhibition efficiency of pyridine-quinoline compounds.
Methods: Polynomial functions for NuSVR algorithm-based ML.
Result: The outcomes demonstrate that the NuSVR model's prediction ability is greatly enhanced by the application of polynomial functions.
Originality: The combination of polynomial functions and deep machine learning based NuSVR algorithms to increase the accuracy of predictive models.
Keywords
Full Text:
PDFReferences
V. C. Anadebe et al., “Multidimensional insight into the corrosion inhibition of salbutamol drug molecule on mild steel in oilfield acidizing fluid: Experimental and computer aided modeling approach,” J Mol Liq, vol. 349, p. 118482, Mar. 2022, doi: 10.1016/J.MOLLIQ.2022.118482.
T. W. Quadri et al., “Predicting protection capacities of pyrimidine-based corrosion inhibitors for mild steel/HCl interface using linear and nonlinear QSPR models,” J Mol Model, vol. 28, no. 9, Sep. 2022, doi: 10.1007/s00894-022-05245-1.
M. Akrom et al., “DFT and microkinetic investigation of oxygen reduction reaction on corrosion inhibition mechanism of iron surface by Syzygium Aromaticum extract,” Appl Surf Sci, vol. 615, Apr. 2023, doi: 10.1016/j.apsusc.2022.156319.
O. V. Mythreyi, M. R. Srinivaas, T. Amit Kumar, and R. Jayaganthan, “Machine-learning-based prediction of corrosion behavior in additively manufactured inconel 718,” Data (Basel), vol. 6, no. 8, Aug. 2021, doi: 10.3390/data6080080.
S. A. Haladu, N. Dalhat Mu’azu, S. A. Ali, A. M. Elsharif, N. A. Odewunmi, and H. M. Abd El-Lateef, “Inhibition of mild steel corrosion in 1 M H2SO4 by a gemini surfactant 1,6-hexyldiyl-bis-(dimethyldodecylammonium bromide): ANN, RSM predictive modeling, quantum chemical and MD simulation studies,” J Mol Liq, vol. 350, p. 118533, Mar. 2022, doi: 10.1016/J.MOLLIQ.2022.118533.
I. B. Obot, D. D. Macdonald, and Z. M. Gasem, “Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview,” Corros Sci, vol. 99, pp. 1–30, Oct. 2015, doi: 10.1016/J.CORSCI.2015.01.037.
W. Kohn and L. J. Sham, “PHYSICAL REVIEW Self-Consistent Equations Including Exchange and Correlation Effects*.”
G. Gece, “The use of quantum chemical methods in corrosion inhibitor studies,” Corros Sci, vol. 50, no. 11, pp. 2981–2992, Nov. 2008, doi: 10.1016/J.CORSCI.2008.08.043.
A. M. Al-Fakih, Z. Y. Algamal, M. H. Lee, H. H. Abdallah, H. Maarof, and M. Aziz, “Quantitative structure–activity relationship model for prediction study of corrosion inhibition efficiency using two-stage sparse multiple linear regression,” J Chemom, vol. 30, no. 7, pp. 361–368, Jul. 2016, doi: 10.1002/cem.2800.
I. B. Obot and Z. M. Gasem, “Theoretical evaluation of corrosion inhibition performance of some pyrazine derivatives,” Corros Sci, vol. 83, pp. 359–366, Jun. 2014, doi: 10.1016/J.CORSCI.2014.03.008.
C. T. Ser, P. Žuvela, and M. W. Wong, “Prediction of corrosion inhibition efficiency of pyridines and quinolines on an iron surface using machine learning-powered quantitative structure-property relationships,” Appl Surf Sci, vol. 512, p. 145612, May 2020, doi: 10.1016/J.APSUSC.2020.145612.
H. Zhao, X. Zhang, L. Ji, H. Hu, and Q. Li, “Quantitative structure–activity relationship model for amino acids as corrosion inhibitors based on the support vector machine and molecular design,” Corros Sci, vol. 83, pp. 261–271, Jun. 2014, doi: 10.1016/J.CORSCI.2014.02.023.
Y. Liu et al., “A Machine Learning-Based QSAR Model for Benzimidazole Derivatives as Corrosion Inhibitors by Incorporating Comprehensive Feature Selection,” Interdiscip Sci, vol. 11, no. 4, pp. 738–747, Dec. 2019, doi: 10.1007/s12539-019-00346-7.
T. W. Quadri et al., “Development of QSAR-based (MLR/ANN) predictive models for effective design of pyridazine corrosion inhibitors,” Mater Today Commun, vol. 30, p. 103163, Mar. 2022, doi: 10.1016/J.MTCOMM.2022.103163.
T. W. Quadri et al., “Computational insights into quinoxaline-based corrosion inhibitors of steel in HCl: Quantum chemical analysis and QSPR-ANN studies,” Arabian Journal of Chemistry, vol. 15, no. 7, p. 103870, Jul. 2022, doi: 10.1016/J.ARABJC.2022.103870.
C. Beltran-Perez et al., “A General Use QSAR-ARX Model to Predict the Corrosion Inhibition Efficiency of Drugs in Terms of Quantum Mechanical Descriptors and Experimental Comparison for Lidocaine,” Int J Mol Sci, vol. 23, no. 9, May 2022, doi: 10.3390/ijms23095086.
N. S. A. Yasmin, N. A. Wahab, and A. N. Anuar, “Improved support vector machine using optimization techniques for an aerobic granular sludge,” Bulletin of Electrical Engineering and Informatics, vol. 9, no. 5, pp. 1835–1843, Oct. 2020, doi: 10.11591/eei.v9i5.2264.
Solikhin, S. Lutfi, Purnomo, and Hardiwinoto, “Prediction of passenger train using fuzzy time series and percentage change methods,” Bulletin of Electrical Engineering and Informatics, vol. 10, no. 6, pp. 3007–3018, Dec. 2021, doi: 10.11591/eei.v10i6.2822.
S. A. Shams, A. H. Omar, A. S. Desuky, M. T. Abou-Kreisha, and G. A. Elsharawy, “Even-odd crossover: a new crossover operator for improving the accuracy of students’ performance prediction,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 4, pp. 2292–2302, Aug. 2022, doi: 10.11591/eei.v11i4.3841.
Solikhin, S. Lutfi, Purnomo, and Hardiwinoto, “A machine learning approach in Python is used to forecast the number of train passengers using a fuzzy time series model,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 5, pp. 2746–2755, Oct. 2022, doi: 10.11591/eei.v11i5.3518.
Y. G. Skrypnik, T. F. Doroshenko, and S. Y. Skrypnik, “ON THE INFLUENCE OF THE NATURE OF SUBSTITUENTS ON THE INHIBITING ACTIVITY OF META-AND PARA-SUBSTITUTED PYRIDINES,” 1995.
T. V Doroshenko, S. N. Lyashchuk, and Y. G. Skrypnik, “The HSAB Principle in the Description of the Inhibitive Effectiveness of Heterocyclic N-Bases,” 2000.
A. Dehghani, A. H. Mostafatabar, G. Bahlakeh, and B. Ramezanzadeh, “A detailed study on the synergistic corrosion inhibition impact of the Quercetin molecules and trivalent europium salt on mild steel; electrochemical/surface studies, DFT modeling, and MC/MD computer simulation,” J Mol Liq, vol. 316, Oct. 2020, doi: 10.1016/j.molliq.2020.113914.
M. H. Shahini, M. Keramatinia, M. Ramezanzadeh, B. Ramezanzadeh, and G. Bahlakeh, “Combined atomic-scale/DFT-theoretical simulations & electrochemical assessments of the chamomile flower extract as a green corrosion inhibitor for mild steel in HCl solution,” J Mol Liq, vol. 342, p. 117570, Nov. 2021, doi: 10.1016/J.MOLLIQ.2021.117570.
A. Thakur, S. Kaya, A. S. Abousalem, and A. Kumar, “Experimental, DFT and MC simulation analysis of Vicia Sativa weed aerial extract as sustainable and eco-benign corrosion inhibitor for mild steel in acidic environment,” Sustain Chem Pharm, vol. 29, Oct. 2022, doi: 10.1016/j.scp.2022.100785.
R. Oukhrib et al., “DFT, Monte Carlo and molecular dynamics simulations for the prediction of corrosion inhibition efficiency of novel pyrazolylnucleosides on Cu(111) surface in acidic media,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-82927-5.
X. Chen, Y. Chen, J. Cui, Y. Li, Y. Liang, and G. Cao, “Molecular dynamics simulation and DFT calculation of ‘green’ scale and corrosion inhibitor,” Comput Mater Sci, vol. 188, p. 110229, Feb. 2021, doi: 10.1016/J.COMMATSCI.2020.110229.
S. Gupta, K. K. Gupta, M. Andersson, R. Yazdi, and R. Ambat, “Electrochemical and molecular modelling studies of CO2 corrosion inhibition characteristics of alkanolamine molecules for the protection of 1Cr steel,” Corros Sci, vol. 195, p. 109999, Feb. 2022, doi: 10.1016/J.CORSCI.2021.109999.
D. K. Kozlica, A. Kokalj, and I. Milošev, “Synergistic effect of 2-mercaptobenzimidazole and octylphosphonic acid as corrosion inhibitors for copper and aluminium – An electrochemical, XPS, FTIR and DFT study,” Corros Sci, vol. 182, p. 109082, Apr. 2021, doi: 10.1016/J.CORSCI.2020.109082.
D. Kumar, V. Jain, and B. Rai, “Capturing the synergistic effects between corrosion inhibitor molecules using density functional theory and ReaxFF simulations - A case for benzyl azide and butyn-1-ol on Cu surface,” Corros Sci, vol. 195, p. 109960, Feb. 2022, doi: 10.1016/J.CORSCI.2021.109960.
N. Ammouchi, H. Allal, Y. Belhocine, S. Bettaz, and E. Zouaoui, “DFT computations and molecular dynamics investigations on conformers of some pyrazinamide derivatives as corrosion inhibitors for aluminum,” J Mol Liq, vol. 300, p. 112309, Feb. 2020, doi: 10.1016/J.MOLLIQ.2019.112309.
I. B. Obot and S. A. Umoren, “Experimental, DFT and QSAR models for the discovery of new pyrazines corrosion inhibitors for steel in oilfield acidizing environment,” Int J Electrochem Sci, vol. 15, no. 9, pp. 9066–9080, Sep. 2020, doi: 10.20964/2020.09.72.
A. A. El Hassani et al., “DFT Theoretical Study of 5-(4-R-Phenyl)-1H-tetrazole (R = H; OCH3; CH3; Cl) as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid,” Metals and Materials International, vol. 26, no. 11, pp. 1725–1733, Nov. 2020, doi: 10.1007/s12540-019-00381-5.
T. Le Minh Pham, T. Khoa Phung, and H. Viet Thang, “DFT insights into the adsorption mechanism of five-membered aromatic heterocycles containing N, O, or S on Fe(1 1 0) surface,” Appl Surf Sci, vol. 583, May 2022, doi: 10.1016/j.apsusc.2022.152524.
A. Kokalj, “Corrosion inhibitors: physisorbed or chemisorbed?,” Corros Sci, vol. 196, p. 109939, Mar. 2022, doi: 10.1016/J.CORSCI.2021.109939.
F. Pedregosa FABIANPEDREGOSA et al., “Scikit-learn: Machine Learning in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. Matthieu Perrot,” 2011. [Online]. Available: http://scikit-learn.sourceforge.net.
T. Sutojo, S. Rustad, M. Akrom, A. Syukur, G. F. Shidik, and H. K. Dipojono, “A machine learning approach for corrosion small datasets,” Npj Mater Degrad, vol. 7, no. 1, Mar. 2023, doi: 10.1038/s41529-023-00336-7.
R. Kosasih and I. Mardhiyah, “Travel Time Estimation Using Support Vector Regression on Model with 8 Features,” Scientific Journal of Informatics, vol. 9, no. 2, pp. 169–178, Nov. 2022, doi: 10.15294/sji.v9i2.37215.
T. M. N. Utami, D. C. R. Novitasari, F. Setiawan, N. Ulinnuha, and Y. Farida, “Tide Prediction in Prigi Beach using Support Vector Regression (SVR) Method,” Scientific Journal of Informatics, vol. 8, no. 2, pp. 194–201, Nov. 2021, doi: 10.15294/sji.v8i2.28906.
M. Mayo, L. Chepulis, and R. G. Paul, “Glycemic-aware metrics and oversampling techniques for predicting blood glucose levels using machine learning,” PLoS One, vol. 14, no. 12, Dec. 2019, doi: 10.1371/journal.pone.0225613.
J. D. Fitriana, B. Prasetiyo, and R. Arifudin, “Expert System Diagnosis of Urinary System Diseases using Forward Chaining and Dempster Shafer,” Scientific Journal of Informatics, vol. 7, no. 1, pp. 2407–7658, 2020, [Online]. Available: http://journal.unnes.ac.id/nju/index.php/sji
Refbacks
- There are currently no refbacks.
Scientific Journal of Informatics (SJI)
p-ISSN 2407-7658 | e-ISSN 2460-0040
Published By Department of Computer Science Universitas Negeri Semarang
Website: https://journal.unnes.ac.id/nju/index.php/sji
Email: [email protected]
This work is licensed under a Creative Commons Attribution 4.0 International License.