Coastal Sentiment Review Using Naïve Bayes with Feature Selection Genetic Algorithm
(1) Department of Informatics, StatePolytechnic of Cilacap, Indonesia
(2) Department of Informatics, Politeknik Negeri Cilacap, Indonesia
(3) Department of Informatics, StatePolytechnic of Cilacap, Indonesia
Abstract
Purpose: The tourism potential in the maritime sector can be Indonesia's mainstay at this time, especially in enjoying the charm of the natural beauty of the coast as people know Indonesia is an archipelagic country. The purpose of this study is to find the best model by applying the feature selection genetic algorithm (GA) and Information Gain (IG) to get the best Naïve Bayes (NB) model and the best features to produce the best level of sentiment classification accuracy.
Methods: The stages of the research were carried out by going through the process of searching, pre-processing, analyzing research data using the Naïve Bayes model and optimizing genetic algorithms, validating data, and model evaluation.
Result: The experimental results show that the best model is naïve Bayes based on information gain and the genetic algorithm yields an accuracy rate of 86.34%.
Novelty: The main contribution to this research is proposing a new model of the best NB optimization model by applying an optimization algorithm in the search for feature selection to increase sentiment classification accuracy.
Keywords
Full Text:
PDFReferences
V. Teles da Mota, C. Pickering, and A. Chauvenet, “Popularity of Australian beaches: Insights from social media images for coastal management,” Ocean Coast. Manag., vol. 217, p. 106018, Feb. 2022, doi: 10.1016/j.ocecoaman.2021.106018.
M. T. Cuomo, I. Colosimo, L. R. Celsi, R. Ferulano, G. Festa, and M. La Rocca, “ENHANCING TRAVELLER EXPERIENCE IN INTEGRATED MOBILITY SERVICES VIA BIG SOCIAL DATA ANALYTICS,” Technol. Forecast. Soc. Change, vol. 176, p. 121460, Mar. 2022, doi: 10.1016/j.techfore.2021.121460.
F. Mirzaalian and E. Halpenny, “Exploring destination loyalty: Application of social media analytics in a nature-based tourism setting,” J. Destin. Mark. Manag., vol. 20, p. 100598, Jun. 2021, doi: 10.1016/j.jdmm.2021.100598.
D. Obembe, O. Kolade, F. Obembe, A. Owoseni, and O. Mafimisebi, “Covid-19 and the tourism industry: An early stage sentiment analysis of the impact of social media and stakeholder communication,” Int. J. Inf. Manag. Data Insights, vol. 1, no. 2, p. 100040, Nov. 2021, doi: 10.1016/j.jjimei.2021.100040.
R. Dolan, Y. Seo, and J. Kemper, “Complaining practices on social media in tourism: A value co-creation and co-destruction perspective,” Tour. Manag., vol. 73, pp. 35–45, Aug. 2019, doi: 10.1016/j.tourman.2019.01.017.
M. B. Nasreen Taj and G. S. Girisha, “Insights of strength and weakness of evolving methodologies of sentiment analysis,” Glob. Transitions Proc., vol. 2, no. 2, pp. 157–162, Nov. 2021, doi: 10.1016/j.gltp.2021.08.059.
M. V. Mäntylä, D. Graziotin, and M. Kuutila, “The evolution of sentiment analysis—A review of research topics, venues, and top cited papers,” Comput. Sci. Rev., vol. 27, pp. 16–32, Feb. 2018, doi: 10.1016/j.cosrev.2017.10.002.
D. M. E. D. M. Hussein, “A survey on sentiment analysis challenges,” J. King Saud Univ. - Eng. Sci., vol. 30, no. 4, pp. 330–338, 2018, doi: 10.1016/j.jksues.2016.04.002.
U. I. Larasati, M. A. Muslim, R. Arifudin, and A. Alamsyah, “Improve the Accuracy of Support Vector Machine Using Chi-Square Statistic and Term Frequency Inverse Document Frequency on Movie Review Sentiment Analysis,” Sci. J. Informatics, vol. 6, no. 1, pp. 138–149, May 2019, doi: 10.15294/sji.v6i1.14244.
S. Fransiska, R. Rianto, and A. I. Gufroni, “Sentiment Analysis Provider By.U on Google Play Store Reviews with TF-IDF and Support Vector Machine (SVM) Method,” Sci. J. Informatics, vol. 7, no. 2, pp. 203–212, Nov. 2020, doi: 10.15294/SJI.V7I2.25596.
N. P. Ririanti and A. Purwinarko, “Implementation of Support Vector Machine Algorithm with Correlation-Based Feature Selection and Term Frequency Inverse Document Frequency for Sentiment Analysis Review Hotel,” Sci. J. Informatics, vol. 8, no. 2, pp. 297–303, Nov. 2021, doi: 10.15294/sji.v8i2.29992.
H. T. Ismet, T. Mustaqim, and D. Purwitasari, “Aspect Based Sentiment Analysis of Product Review Using Memory Network,” Sci. J. Informatics, vol. 9, no. 1, pp. 73–83, May 2022, doi: 10.15294/sji.v9i1.34094.
R. K. Behera, M. Jena, S. K. Rath, and S. Misra, “Co-LSTM: Convolutional LSTM model for sentiment analysis in social big data,” Inf. Process. Manag., vol. 58, no. 1, p. 102435, Jan. 2021, doi: 10.1016/j.ipm.2020.102435.
W. Liao, B. Zeng, J. Liu, P. Wei, X. Cheng, and W. Zhang, “Multi-level graph neural network for text sentiment analysis,” Comput. Electr. Eng., vol. 92, p. 107096, Jun. 2021, doi: 10.1016/j.compeleceng.2021.107096.
G. A. Ruz, P. A. Henríquez, and A. Mascareño, “Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers,” Futur. Gener. Comput. Syst., vol. 106, pp. 92–104, May 2020, doi: 10.1016/j.future.2020.01.005.
R. Blanquero, E. Carrizosa, P. Ramírez-Cobo, and M. R. Sillero-Denamiel, “Variable selection for Naïve Bayes classification,” Comput. Oper. Res., vol. 135, p. 105456, Nov. 2021, doi: 10.1016/j.cor.2021.105456.
Y. Yan, J. Chen, and Z. Wang, “Mining public sentiments and perspectives from geotagged social media data for appraising the post-earthquake recovery of tourism destinations,” Appl. Geogr., vol. 123, p. 102306, Oct. 2020, doi: 10.1016/j.apgeog.2020.102306.
E. Park, J. Park, and M. Hu, “Tourism demand forecasting with online news data mining,” Ann. Tour. Res., vol. 90, p. 103273, Sep. 2021, doi: 10.1016/j.annals.2021.103273.
T. Ali, B. Marc, B. Omar, K. Soulaimane, and S. Larbi, “Exploring destination’s negative e-reputation using aspect based sentiment analysis approach: Case of Marrakech destination on TripAdvisor,” Tour. Manag. Perspect., vol. 40, p. 100892, Oct. 2021, doi: 10.1016/j.tmp.2021.100892.
B. Sohrabi, I. Raeesi Vanani, N. Nasiri, and A. Ghasemi Rud, “A predictive model of tourist destinations based on tourists’ comments and interests using text analytics,” Tour. Manag. Perspect., vol. 35, p. 100710, Jul. 2020, doi: 10.1016/j.tmp.2020.100710.
S. Sun, C. Luo, and J. Chen, “A review of natural language processing techniques for opinion mining systems,” Inf. Fusion, vol. 36, pp. 10–25, 2017, doi: 10.1016/j.inffus.2016.10.004.
J. Camacho and A. Ferrer, “Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: Practical aspects,” Chemom. Intell. Lab. Syst., vol. 131, pp. 37–50, 2014, doi: 10.1016/j.chemolab.2013.12.003.
D. Apriliani, T. Abidin, E. Sutanta, A. Hamzah, and O. Somantri, “Sentiment Analysis for Assessment of Hotel Services Review using Feature Selection Approach based on Decision Tree,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 4, pp. 240–245, 2020, doi: 10.14569/IJACSA.2020.0110432.
F. Gorunescu, Data Mining: Concepts, Models and Techniques, vol. 12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
Refbacks
- There are currently no refbacks.
Scientific Journal of Informatics (SJI)
p-ISSN 2407-7658 | e-ISSN 2460-0040
Published By Department of Computer Science Universitas Negeri Semarang
Website: https://journal.unnes.ac.id/nju/index.php/sji
Email: [email protected]
This work is licensed under a Creative Commons Attribution 4.0 International License.