Alphabet Classification of Sign System Using Convolutional Neural Network with Contrast Limited Adaptive Histogram Equalization and Canny Edge Detection
(1) Computer Science Department, Universitas Negeri Semarang, Indonesia
(2) Computer Science Department, Universitas Negeri Semarang, Indonesia
Abstract
Purpose: There are deaf people who have problems in communicating orally because they do not have the ability to speak and hear. The sign system is used as a solution to this problem, but not everyone understands the use and meaning of the sign system, even in terms of the alphabet. Therefore, it is necessary to classify a sign system in the form of American Sign Language (ASL) using Artificial Intelligence technology to get good results.
Methods: This research focuses on improving the accuracy of ASL alphabet classification using the VGG-19 and ResNet50 architecture of the Convolutional Neural Network (CNN) method combined with Contrast Limited Adaptive Histogram Equalization (CLAHE) to improve the detail quality of images and Canny Edge Detection to produce images that focus on the objects in it. The focused result is the accuracy value. This study uses the ASL alphabet dataset from Kaggle.
Result: Based on the test results, there are three best accuracy results. The first is using the ResNet50 architecture, CLAHE, and an image size of 128 x 128 pixels with an accuracy of 99.9%, followed by the ResNet50 architecture, CLAHE + Canny Edge Detection, and an image size of 128 x 128 pixels with an accuracy of 99.82 %, and in third place are the VGG-19 architecture, CLAHE, and an image size of 128 x 128 pixels with an accuracy of 98.93%.
Novelty: The novelty of this study is the increase in the accuracy value of ASL image classification from previous studies.Keywords
Full Text:
PDFReferences
E. I. Justisiani, “Persepsi Masyarakat Tentang Bentuk Komunikasi Verbal dan Komunikasi Nonverbal Pada Pelayanan Rumah Sakit Umum Daerah Abdul Wahab Sjahranie Samarinda,” J Am Soc Cytopathol, vol. 2, no. 3, pp. 193–206, 2014, doi: 10.1016/s2213-2945(14)00111-2.
R. Yuliana, “Peran Komunikasi Dalam Organisasi,” Jurnal SITE Semarang, vol. 4, no. 3, pp. 52–58, 2012.
S. A. E. El-Din and M. A. A. El-Ghany, “Sign Language Interpreter System: An Alternative System for Machine Learning,” Proceedings of NILES2020:2nd Novel Intelligent and Leading Emerging Sciences Conference, pp. 332–337, 2020, doi: 10.1109/NILES50944.2020.9257958.
S. Hendrian, “Algoritma Klasifikasi Data Mining untuk Memprediksi Siswa Dalam Memperoleh Bantuan Dana Pendidikan,” Faktor Exacta, vol. 11, no. 3, pp. 266–274, 2018, doi: 10.30998/faktorexacta.v11i3.2777.
J. Han, M. Kamber, and J. Pei, Data Mining Concepts and Techniques, 3rd ed. Morgan Kaufmann Publishers Inc., 2011.
T. W. Edgar and D. O. Manz, Research Methods for Cyber Security, 1st ed. Syngress, 2017.
P. Rajendra Kumar and E. B. K. Manash, “Deep learning: A Branch of Machine Learning,” J Phys Conf Ser, vol. 1228, no. 1, 2019, doi: 10.1088/1742-6596/1228/1/012045.
L. Alzubaidi et al., “Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions,” J Big Data, vol. 8, no. 1, 2021, doi: 10.1186/s40537-021-00444-8.
A. Bansal and N. Singh, “Image Enhancement Techniques: A Review,” Asian Journal of Convergence in Technology, vol. 6, no. 2, pp. 7–11, 2020, doi: 10.33130/ajct.2020v06i02.002.
W. Zhou, X. Ma, and Y. Zhang, “Research on Image Preprocessing Algorithm and Deep Learning of Iris Recognition,” J Phys Conf Ser, vol. 1621, no. 1, 2020, doi: 10.1088/1742-6596/1621/1/012008.
Hendriyana and Y. H. Maulana, “Identifikasi Jenis Kayu Menggunakan Convolutional Neural Network dengan Arsitektur Mobilenet,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 1, pp. 70–76, 2020, [Online]. Available: http://jurnal.iaii.or.id/index.php/RESTI/article/view/1445/203
A. Anton, N. F. Nissa, A. Janiati, N. Cahya, and P. Astuti, “Application of Deep Learning Using Convolutional Neural Network (CNN) Method for Women’s Skin Classification,” Scientific Journal of Informatics, vol. 8, no. 1, pp. 144–153, 2021, doi: 10.15294/sji.v8i1.26888.
H. S. Ibrahim and U. N. Wisesty, “Analisis Deep Learning untuk Mengenali QRS Kompleks Pada Sinyal ECG dengan Metode CNN,” e-Proceeding of Engineering, vol. 5, no. 2, pp. 3718–3725, 2018.
J. Feng and S. Lu, “Performance Analysis of Various Activation Functions in Artificial Neural Networks,” J Phys Conf Ser, vol. 1237, no. 2, 2019, doi: 10.1088/1742-6596/1237/2/022030.
C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions: Comparison of Trends in Practice and Research for Deep Learning,” 2nd International Conference on Computational Sciences and Technology, pp. 124–133, 2018, [Online]. Available: http://arxiv.org/abs/1811.03378
A. Andrew and H. Santoso, “Compare VGG19, ResNet50, Inception-V3 for Review Food Rating,” SinkrOn : Jurnal dan Penelitian Teknik Informatika, vol. 7, no. 2, pp. 845–494, Apr. 2022, doi: 10.33395/sinkron.v7i2.11383.
S. Irawan, Y. Hasan, and K. Tampubolon, “Penerapan Metode CLAHE untuk Memperjelas Objek Pantulan Kaca Pada Citra Digital,” KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer), vol. 3, no. 1, pp. 30–35, Nov. 2019, doi: 10.30865/komik.v3i1.1563.
Z. A. Matondang, “Penerapan Metode Contrast Limited Adaptive Histogram Equalization (CLAHE) Pada Citra Digital untuk Memperbaiki Gambar X-RAY,” Publikasi Ilmiah Teknologi Informasi Neumann, vol. 3, no. 2, pp. 24–29, 2018.
D. Sundani, S. Widiyanto, Y. Karyanti, and D. T. Wardani, “Identification of Image Edge Using Quantum Canny Edge Detection Algorithm,” Journal of ICT Research and Applications, vol. 13, no. 2, pp. 133–144, 2019, doi: 10.5614/itbj.ict.res.appl.2019.13.2.4.
R. W. T. Hartono, G. Adi Sasono, S. P. Angraeni, and F. H. Suwanda, “Implementasi Algoritma Canny Edge Detection untuk Identifikasi Panjang dan Berat Ikan Koi Saat Bergerak,” Seminar Nasional Teknik Elektro (SENTER), pp. 35–44, 2018.
K. Y. Lum, Y. H. Goh, and Y. Bin Lee, “American Sign Language Recognition Based on MobileNetV2,” Advances in Science, Technology and Engineering Systems Journal, vol. 5, no. 6, pp. 481–488, 2020, doi: 10.25046/aj050657.
S. Kaslay, T. Kesarkar, and K. Shinde, “ASL Gesture Recognition Using Various Feature Extraction Techniques and SVM,” International Research Journal of Engineering and Technology, 2020, [Online]. Available: www.irjet.net
Y. Ma, T. Xu, and K. Kim, “Two-Stream Mixed Convolutional Neural Network for American Sign Language Recognition,” Sensors, vol. 22, no. 16, Aug. 2022, doi: 10.3390/s22165959.
Refbacks
- There are currently no refbacks.
Scientific Journal of Informatics (SJI)
p-ISSN 2407-7658 | e-ISSN 2460-0040
Published By Department of Computer Science Universitas Negeri Semarang
Website: https://journal.unnes.ac.id/nju/index.php/sji
Email: [email protected]
This work is licensed under a Creative Commons Attribution 4.0 International License.