Clothing Sales Prediction Information System Using Web-Based Double Exponential Smoothing Method
(1) Department of Information System, Universitas Islam Negeri Sumatera Utara, Indonesia
(2) Department of Information System, Universitas Islam Negeri Sumatera Utara, Indonesia
(3) Department of Electronics and Communications Engineering, Technology and Maritime Transport, Egypt
Abstract
Purpose: The purpose of this research is to determine the smallest error value so that the resulting prediction data is more accurate. This prediction data is used to help Raja Fashion Medan in processing goods data and help predict the amount of goods that must be provided to meet customer needs in the next period.
Methods: This research uses the Double Exponential Smoothing method because it is used on data that is more stable and has a trend pattern. To test the accuracy of the prediction results with the Double Exponential Smoothing method, the Root Mean Square Error (RMSE) and Mean Absolute Percent Error (MAPE) data testing methods are used by finding the smallest error value.
Result: This test is carried out by determining the smallest error value on 118 data types of goods with error results, namely the average Root Mean Square Error (RMSE) of 26.5, Mean Absolute Deviation (MAD) 1.2, Mean Squared Error (MSE) 37.8 and Mean Absolute Percent Error (MAPE) of 10%, it can be concluded that the accuracy of theprediction is very good.
Novelty: Testing on prediction results uses 4 methods to determine more accurate results, namely with Root Mean Square Error (RMSE), Mean Absolute Deviation (MAD), Mean Squared Error (MSE), and Mean Absolute Percent Error (MAPE) which are used to find values smallest error.
Keywords
Full Text:
PDFReferences
N. S. B. Sembiring, E. Ginting, M. Fauzi, Yudi, F. Tambunan, and E. V. Haryanto, “An Expert System to Diagnose Herpes Zoster Disease Using Bayes Theorem,” 2019. doi: 10.1109/CITSM47753.2019.8965381.
R. Patil and S. Tamane, “A comparative analysis on the evaluation of classification algorithms in the prediction of diabetes,” Int. J. Electr. Comput. Eng., vol. 8, no. 5, pp. 3966–3975, 2018, doi: 10.11591/ijece.v8i5.pp3966-3975.
J. Park, I. Dayarian, and B. Montreuil, “Showcasing optimization in omnichannel retailing,” Eur. J. Oper. Res., vol. 294, no. 3, pp. 895–905, Nov. 2021, doi: 10.1016/J.EJOR.2020.03.081.
R. Chavan, “Analysis of Fashion Industry Business Environment,” Latest Trends Text. Fash. Des., vol. 2, no. 4, 2018, doi: 10.32474/lttfd.2018.02.000144.
M. Momtazpour and P. Khadivi, “Sales promotions and resource optimization in sustainable fashion,” 2019. doi: 10.1109/AI4I46381.2019.00028.
V. Dignum, “The ART of AI - Accountability, Responsibility, Transparency,” Medium, 2018.
S. Chen, “Correlation analysis of financial indicators and stock price fluctuations based on artificial intelligence system,” 2021. doi: 10.1109/ICAIS50930.2021.9395944.
Y. Zhao, “Study on Optimization Method of Hidden Layer Nodes and Training Times in Artificial Neural Network,” 2021. doi: 10.1109/ICEITSA54226.2021.00081.
W. Yuchi et al., “Evaluation of random forest regression and multiple linear regression for predicting indoor fine particulate matter concentrations in a highly polluted city,” Environ. Pollut., vol. 245, pp. 746–753, Feb. 2019, doi: 10.1016/j.envpol.2018.11.034.
Z. Zhang, Y. Li, L. Li, Z. Li, and S. Liu, “Multiple Linear Regression for High Efficiency Video Intra Coding,” in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2019, vol. 2019-May. doi: 10.1109/ICASSP.2019.8682358.
C. Wang and H. G. Matthies, “Epistemic uncertainty-based reliability analysis for engineeringsystem with hybrid evidence and fuzzy variables,” Comput. Methods Appl. Mech. Eng., vol. 355, 2019, doi: 10.1016/j.cma.2019.06.036.
S. Wang, J. Cao, and P. S. Yu, “Deep Learning for Spatio-Temporal Data Mining: A Survey,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 8, pp. 3681–3700, Aug. 2022, doi: 10.1109/TKDE.2020.3025580.
D. Fan and D. He, “Knative Autoscaler Optimize Based on Double Exponential Smoothing,” 2020. doi: 10.1109/ITOEC49072.2020.9141858.
E. Hasmin and N. Aini, “Data Mining for Inventory Forecasting Using Double Exponential Smoothing Method,” 2020. doi: 10.1109/ICORIS50180.2020.9320765.
Ramadiani, N. Wardani, A. Harsa Kridalaksana, M. Labib Jundillah, and Azainil, “Forecasting the Hotel Room Reservation Rate in East Kalimantan Using Double Exponential Smoothing,” 2019. doi: 10.1109/ICIC47613.2019.8985916.
Muladi, S. A. Siregar, and A. P. Wibawa, “Double Exponential-Smoothing Neural Network for Foreign Exchange Rate Forecasting,” 2018. doi: 10.1109/EIConCIT.2018.8878591.
Bahar and Soegiarto, “Development of instructional media based on mobile technology to enriching teaching material for primary school students in Indonesia post-learning in the classrooms,” Int. J. Sci. Technol. Res., vol. 9, no. 1, pp. 94–98, 2020.
N. Chalarak and N. Uchihira, “Proposing R&D Bridge Manager Competency Development Framework,” 2022. doi: 10.1109/TEMSCON-ASPAC52831.2022.9916540.
M. Yasin, A. Akhmad Arman, I. J. M. Edward, and W. Shalannanda, “Designing information security governance recommendations and roadmap using COBIT 2019 Framework and ISO 27001:2013 (Case Study Ditreskrimsus Polda XYZ),” 2020. doi: 10.1109/TSSA51342.2020.9310875.
H. Yan, “Research on E-commerce Precision Marketing Strategy Based on Big Data Technology,” 2021. doi: 10.1109/ECIT52743.2021.00026.
C. Cassandra and R. Sari, “Agricultural Expert System Design Based on Bayes Theorem,” 2018. doi: 10.1109/ICIMTech.2018.8528127.
A. K. Nalendra, “Rapid Application Development (RAD) model method for creating an agricultural irrigation system based on internet of things,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1098, no. 2, 2021, doi: 10.1088/1757-899x/1098/2/022103.
W. Wen, Z. Yuan, and Y. Yuan, “Improving RETECS method using FP-Growth in continuous integration,” 2019. doi: 10.1109/CCIS.2018.8691385.
L. Mohan, J. Pant, P. Suyal, and A. Kumar, “Support Vector Machine Accuracy Improvement with Classification,” 2020. doi: 10.1109/CICN49253.2020.9242572.
Y. Miao, J. Lin, and N. Xu, “An improved parallel FP-growth algorithm based on Spark and its application,” in Chinese Control Conference, CCC, 2019, vol. 2019-July. doi: 10.23919/ChiCC.2019.8866373.
M. I. Perangin-angin, A. H. Lubis, and A. Ikhwan, “Association Rules Analysis on FP-Growth Method in Predicting Sales,” Int. J. Recent Trends Eng. Res., vol. 3, no. 10, pp. 58–65, 2017, doi: 10.23883/ijrter.2017.3453.dhcoa.
Y. Yang and T. Chen, “Analysis and visualization implementation of medical big data resource sharing mechanism based on deep learning,” IEEE Access, vol. 7, 2019, doi: 10.1109/ACCESS.2019.2949879.
A. Ikhwan, “a Novelty of Data Mining for Fp-Growth Algorithm,” vol. 9, no. 7, pp. 1660–1669, 2018.
T. Wang, R. Gault, and D. Greer, “A novel Data-driven fuzzy aggregation method for TakagiSugeno-Kang fuzzy Neural network system using ensemble learning,” in IEEE International Conference on Fuzzy Systems, 2021, vol. 2021-July. doi: 10.1109/FUZZ45933.2021.9494396.
A. Purwanto and L. Parningotan Manik, “Software Effort Estimation Using Logarithmic Fuzzy Preference Programming and Least Squares Support Vector Machines,” Sci. J. Informatics, vol. 10, no. 1, pp. 1–12, 2023, doi: 10.15294/sji.v10i1.39865.
F. Chen, “Optimal policies for multi-echelon inventory problems with batch ordering,” Oper. Res., vol. 48, no. 3, pp. 376–389, 2000, doi: 10.1287/OPRE.48.3.376.12427.
N. K. A. Wirdiani, P. Hridayami, N. P. A. Widiari, K. D. Rismawan, P. B. Candradinata, and I. P. D. Jayantha, “Face Identification Based on K-Nearest Neighbor,” Sci. J. Informatics, vol. 6, no. 2, pp. 150–159, Nov. 2019, doi: 10.15294/sji.v6i2.19503.
U. I. Larasati, M. A. Muslim, R. Arifudin, and A. Alamsyah, “Improve the accuracy of support vector machine using chi square statistic and term frequency inverse document frequency on movie review sentiment analysis,” Sci. J. Informatics, vol. 6, no. 1, pp. 138–149, 2019.
M. Kempa and Y. Peng, “Machine Learning with Applications Machine learning algorithms for fraud prediction in property insurance : Empirical evidence using real-world microdata,” Mach. Learn. with Appl., vol. 5, no. July 2020, p. 100074, 2021, doi: 10.1016/j.mlwa.2021.100074.
X. Huang and S. Wang, “Prediction of bottom-hole flow pressure in coalbed gas wells based on GA optimization SVM,” 2018. doi: 10.1109/IAEAC.2018.8577488.
R. Mumpuni, Sugiarto, and R. Alhakim, “Design and implementation of inventory forecasting system using double exponential smoothing method,” 2020. doi: 10.1109/ITIS50118.2020.9321038.
A. Chusyairi, R. N. S. Pelsri, and E. Handayani, “Optimization of exponential smoothing method using genetic algorithm to predict e-report service,” 2018. doi: 10.1109/ICITISEE.2018.8721008.
H. A. Rosyid, T. Widiyaningtyas, and N. F. Hadinata, “Implementation of the Exponential Smoothing Method for Forecasting Food Prices at Provincial Levels on Java Island,” 2019. doi: 10.1109/ICIC47613.2019.8985872.
C. Zhang, S. Li, J. Wen, and S. Fu, “Remaining Useful Life Prediction Method Based on the Improved Holt Double Exponential Model,” 2022. doi: 10.1109/PRAI55851.2022.9904057.
C. R. Mege, I. Nashirul Haq, E. Leksono, and F. X. Nugroho Soelami, “Battery Discharging Temperature Prediction Using Holt’s Double Exponential Smoothing,” 2019. doi: 10.1109/ICEVT48285.2019.8993965.
R. Anggrainingsih, A. Prabanuadhi, and S. P. Yohanes, “Forecasting the Number of Patients at RSUD Sukoharjo Using Double Exponential Smoothing Holt,” 2018. doi: 10.1109/ICICTR.2018.8706850.
H. Maulana and U. Mulyantika, “The Prediction of Export Product Prices with Holt’s Double Exponential Smoothing Method,” 2020. doi: 10.1109/IC2IE50715.2020.9274679.
A. Stephano, S. Martha, and S. Rahmayuda, “Sistem informasi peramalan tren pelanggan dengan menggunakan metode double exponential smoothing di Mess GM,” J. Komput. dan Apl., vol. 8, no. 1, pp. 1–10, 2020.
J. R. Jayapandiyan, C. Kavitha, and K. Sakthivel, “Enhanced Least Significant Bit Replacement Algorithm in Spatial Domain of Steganography Using Character Sequence Optimization,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.3009234.
J. W. Laiya and S. Manueke, “Pentingnya Akurasi Data Dalam Mempertahankan Kinerja Perusahaan Pada PT . Massindo Solaris Nusantara,” J. MABP, vol. 4, no. 0431, pp. 38–51, 2022.
H. D. E. Sinaga, N. Irawati, and S. Informasi, “Perbandingan Double Moving Average Dengan Double Exponential Smoothing Pada Peramalan,” Jurteksi, vol. IV, no. 2, pp. 197–204, 2018.
G. Surianingsih, H. Syafwan, and A. Sapta, “Forecasting Stok Sparepart Sepeda Motor Menggunakan Metode Double Exponential Smoothing(DES),” J. Media Inform. Budidarma, vol. 6, no. 2, p. 1191, 2022, doi: 10.30865/mib.v6i2.4028.
J. Lee Kar Ming, F. Saleena Taip, M. Shamsul Anuar, S. Bahari Mohd Noor, and Z. Abdullah, “Artificial Neural Network Topology Optimization using K-Fold Cross Validation for Spray Drying of Coconut Milk,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 778, no. 1. doi: 10.1088/1757-899X/778/1/012094.
D. I. Mulyana and Marjuki, “Optimasi Prediksi Harga Udang Vaname Dengan Metode Rmse Dan Mae Dalam Algoritma Regresi Linier,” J. Ilm. Betrik, vol. 13, no. 1, pp. 50–58, 2022, doi: 10.36050/betrik.v13i1.439.
I. Damanik, I. B. P. Gunadnya, and I. G. N. A. Aviantara, “Penggunaan Beberapa Model Peramalan (Forecasting) pada Produksi Gula Kristal Putih di PT. Perkebunan Nusantara X,” J. BETA (Biosistem dan Tek. Pertanian), vol. 10, no. 1, p. 21, 2021, doi: 10.24843/jbeta.2022.v10.i01.p03.
Refbacks
- There are currently no refbacks.
Scientific Journal of Informatics (SJI)
p-ISSN 2407-7658 | e-ISSN 2460-0040
Published By Department of Computer Science Universitas Negeri Semarang
Website: https://journal.unnes.ac.id/nju/index.php/sji
Email: [email protected]
This work is licensed under a Creative Commons Attribution 4.0 International License.