A Comparative Study of Javanese Script Classification with GoogleNet, DenseNet, ResNet, VGG16 and VGG19

Ajib Susanto(1), Christy Atika Sari(2), Eko Hari Rachmawanto(3), Ibnu Utomo Wahyu Mulyono(4), Noorayisahbe Mohd Yaacob(5),


(1) Faculty of Computer Science, Universitas Dian Nuswantoro, Indonesia
(2) Faculty of Computer Science, Universitas Dian Nuswantoro, Indonesia
(3) Faculty of Computer Science, Universitas Dian Nuswantoro, Indonesia
(4) Faculty of Computer Science, Universitas Dian Nuswantoro, Indonesia
(5) Faculty of Information Science and Technology, University Kebangsaan Malaysia, Selangor, Malaysia

Abstract

Purpose: Javanese script is a legacy of heritage or heritage in Indonesia originating from the island of Java needs to be preserved. Therefore, in this study, the classification and identification process of Javanese script letters will be carried out using the CNN method. The purpose of this research is to be able to build a model which can properly classify Javanese script, it can help in the process of recognizing letters in Javanese script easily.

Methods: In this study, the Javanese script classification process has been used the transfer learning process of Convolutional Neural Network, namely GoogleNet, DenseNet, ResNet, VGG16 and VGG19. The purpose of using transfer learning is to improve the sequential CNN model, processing can be better and optimal because it utilizes a previously trained model.

Result: The results obtained after testing in this study are using the transfer learning method, the GoogleNet model gets an accuracy of 88.75%, the DenseNet model gets an accuracy of 92%, the ResNet model gets an accuracy of 82.75%, the VGG16 model gets an accuracy of 99.25% and the VGG19 model gets an accuracy of 99.50%.

Novelty: In previous studies, it is still very rare to discuss the Javanese script classification process using the CNN transfer learning method and which method is the most optimal for performing the Javanese script classification process. In this study, it had been resulted find an effective method to be able to carry out the Javanese script classification process properly and optimally.

Keywords

Javanese script; GoogleNet; DenseNet; ResNet; VGG; CNN

Full Text:

PDF

References

M. A. Rasyidi, T. Bariyah, Y. I. Riskajaya, dan A. D. Septyani, “Classification of handwritten Javanese script using random forest algorithm,” Bull. Electr. Eng. Informatics, vol. 10, no. 3, hal. 1308–1315, 2021, doi: 10.11591/eei.v10i3.3036.

A. R. G et al., “Implementation of of Optical Optical Character Character Recognition Recognition using using Tesseract Tesseract with the Javanese Script Target in Android Application with the Javanese Script Target in Android Application,” Procedia Comput. Sci., vol. 157, hal. 499–505, 2019, doi: 10.1016/j.procs.2019.09.006.

I. Prihandi, I. Ranggadara, S. Dwiasnati, Y. S. Sari, dan Suhendra, “Implementation of Backpropagation Method for Identified Javanese Scripts,” J. Phys. Conf. Ser., 2020, doi: 10.1088/1742-6596/1477/3/032020.

U. D. Choiro, K. Qismiyah, dan D. P. Yuniar, “Development of Learning Media with Javanese,” Proc. Int. Conf. Educ. Manag. Technol. (ICEMT 2022), vol. 1, hal. 172–179, 2023, doi: 10.2991/978-2-494069-95-4.

D. Iskandar, S. Hidayat, U. Jamaludin, dan S. M. Leksono, “Javanese script digitalization and its utilization as learning media: an etnopedagogical approach,” Int. J. Math. Sci. Educ., vol. 1, hal. 21–30, 2023, doi: 10.59965/ijmsed.v1i1.24.

A. A. Nggofur dan S. Dwijonagoro, “Improving Javanese Letter Reading Skill through the Iqro Script Method,” Int. J. Corner Educ. Res., vol. 1, no. 2, hal. 69–77, 2022, doi: 10.54012/ijcer.v1i2.95.

A. Budiman, A. Fadlil, dan R. Umar, “Identification of Learning Javanese Script Handwriting Using Histogram Chain Code,” Edumaspul J. Pendidik., vol. 7, no. 1, hal. 147–153, 2023, doi: https://ummaspul.e-journal.id/maspuljr/article/view/5413.

B. Prayoga, H. Mita, A. Sari, L. Sri, dan J. Asharani, “Development of javanese script learning media based on uno stacko game and penta helix approach at sdn 2 sidowarno,” Int. J. Javanese Stud., vol. 6, no. 2, hal. 1286–1297, 2023, doi: https://dx.doi.org/10.20961/javanologi.v6i2.75696 DEVELOPMENT.

K. L. Kohsasih dan B. H. Hayadi, “Classification SARS-CoV-2 Disease based on CT-Scan Image Using Convolutional Neural Network,” Sci. J. Informatics, vol. 9, no. 2, hal. 197–204, 2022, doi: 10.15294/sji.v9i2.36583.

I. H. Sarker, “Deep Learning : A Comprehensive Overview on Techniques , Taxonomy , Applications and Research Directions,” SN Comput. Sci., vol. 2, no. 6, hal. 1–20, 2021, doi: 10.1007/s42979-021-00815-1.

H. Liu dan B. Lang, “Machine Learning and Deep Learning Methods for Intrusion Detection Systems : A Survey,” Appl. Sci., vol. 9, no. 20, 2019, doi: 10.3390/app9204396.

I. Rizwan, I. Haque, dan J. Neubert, “Deep learning approaches to biomedical image segmentation,” Informatics Med. Unlocked, vol. 18, hal. 100297, 2020, doi: 10.1016/j.imu.2020.100297.

C. Janiesch dan K. Heinrich, “Machine learning and deep learning,” Electron. Mark., hal. 685–695, 2021.

N. Kasabov, “Springer Series on Bio- and Neurosystems,” in Springer Series on Bio-and Neurosystems 7 Time-Space, 2019.

P. Wang, E. Fan, dan P. Wang, “Comparative analysis of image classification algorithms based on traditional machine learning and deep learning,” Pattern Recognit. Lett., vol. 141, hal. 197–204, 2021, doi: https://doi.org/10.1016/j.patrec.2020.07.042.

D. A. Bashar, “Survey on evolving deep learning neural network architectures.,” J. Artif. Intell. Capsul. Networks, vol. 1, hal. 73–82, 2019, doi: 10.36548/jaicn.2019.2.003.

X. Liu, L. Song, S. Liu, dan Y. Zhang, “A Review of Deep-Learning-Based Medical Image Segmentation Methods,” Sustain., hal. 1–29, 2021, doi: https://doi.org/10.3390/su13031224.

N. F. Nissa, A. Janiati, N. Cahya, dan P. Astuti, “Application of Deep Learning Using Convolutional Neural Network ( CNN ) Method for Women ’ s Skin Classification,” Sci. J. Informatics, vol. 8, no. 1, hal. 144–153, 2021, doi: 10.15294/sji.v8i1.26888.

M. R. Ningsih, K. Aalifian, H. Wibowo, dan A. U. Dullah, “Global recession sentiment analysis utilizing VADER and ensemble learning method with word embedding,” J. Soft Comput. Explor., vol. 4, no. 3, hal. 142–151, 2023, doi: https://doi.org/10.52465/joscex.v4i3.193.

S. S. Yadav dan S. M. Jadhav, “Deep convolutional neural network based medical image classification for disease diagnosis,” J. Big Data, 2019, doi: 10.1186/s40537-019-0276-2.

N. Zhang, Y.-X. Cai, Y.-Y. Wang, Y.-T. Tian, X.-L. Wang, dan B. Badami, “Skin cancer diagnosis based on optimized convolutional neural network,” Artif. Intell. Med., vol. 102, 2020, doi: https://doi.org/10.1016/j.artmed.2019.101756.

S. A. Alanazi et al., “Boosting Breast Cancer Detection Using Convolutional Neural Network,” J. Healthc. Eng., vol. 2021, 2021, doi: https://doi.org/10.1155/2021/5528622 Research.

A. Çinar dan M. Yildirim, “Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture,” Med. Hypotheses, vol. 139, 2020, doi: https://doi.org/10.1016/j.mehy.2020.109684.

G. Shrestha, Deepsikha, M. Das, dan N. Dey, “Plant Disease Detection Using CNN,” Proc. 2020 IEEE Appl. Signal Process. Conf., 2020, doi: 10.1109/ASPCON49795.2020.9276722.

M. Desai dan M. Shah, “Clinical eHealth An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network ( MLP ) and Convolutional neural network ( CNN ),” Clin. eHealth, vol. 4, no. 2021, hal. 1–11, 2022, doi: 10.1016/j.ceh.2020.11.002.

F. Demir, A. M. Ismael, dan A. Sengur, “Classification of Lung Sounds With CNN Model Using Parallel Pooling Structure,” IEEE Access, vol. 8, hal. 105376–105383, 2020, doi: 10.1109/ACCESS.2020.3000111.

A. Rafiei, A. Rezaee, F. Hajati, S. Gheisari, dan M. Golzan, “SSP: Early prediction of sepsis using fully connected LSTM-CNN model,” Comput. Biol. Med., vol. 128, 2021, doi: https://doi.org/10.1016/j.compbiomed.2020.104110.

M. Cnn, M. Wang, S. Lu, C. Hsieh, dan C. Hung, “Fault Detection of Wind Turbine Blades Using,” Sustain., vol. 14, 2022, doi: https://doi.org/10.3390/su14031781.

T. Approach dan Z. Leonowicz, “Identification of Plant-Leaf Diseases Using CNN and,” Electron., vol. 10, no. 12, 2021, doi: https://doi.org/10.3390/electronics10121388.

D. I. S. H. T. C. Fathicah, “Classification of Tobacco Leaf Pests Using VGG16 Transfer Learning,” Dwiretno Istiyadi Swasono; Handayani Tjandrasa; Chastine Fathicah, hal. 176–181, 2019, doi: 10.1109/ICTS.2019.8850946.

S. Das, O. F. M. R. R. Aranya, dan N. N. Labiba, “Brain Tumor Classification Using Convolutional Neural Network,” 2019 1st Int. Conf. Adv. Sci. Eng. Robot. Technol., 2019, doi: 10.1109/ICASERT.2019.8934603.

S. Y. Chaganti, I. Nanda, K. R. Pandi, T. G. N. R. S. N. Prudhvith, dan N. Kumar, “Image Classification using SVM and CNN,” Int. Conf. Comput. Sci. Eng. Appl., 2020, doi: 10.1109/ICCSEA49143.2020.9132851.

M. A. Jasim dan J. M. AL-Tuwaijari, “Plant Leaf Diseases Detection and Classification Using Image Processing and Deep Learning Techniques,” Marwan Adnan Jasim; Jamal Mustafa AL-Tuwaijari, 2020, doi: 10.1109/CSASE48920.2020.9142097.

M. M. Badža, “applied sciences Classification of Brain Tumors from MRI Images Using a Convolutional Neural Network,” Appl. Sci., 2020, doi: https://doi.org/10.3390/app10061999.

J. Unjung dan M. R. Ningsih, “Optimized Handwriting-based Parkinson ’ s Disease Classification Using Ensemble Modeling and VGG19 Feature Extraction,” Sci. J. Informatics, vol. 10, no. 4, hal. 489–498, 2023, doi: 10.15294/sji.v10i4.47108.

N. Dua, S. Nand, S. Vijay, dan B. Semwal, “Multi ‑ input CNN ‑ GRU based human activity recognition using wearable sensors,” Computing, vol. 103, no. 7, hal. 1461–1478, 2021, doi: 10.1007/s00607-021-00928-8.

A. W. Salehi, S. Khan, G. Gupta, B. I. Alabduallah, dan A. Almjally, “A Study of CNN and Transfer Learning in Medical Imaging : Advantages , Challenges , Future Scope,” Sustain., vol. 15, no. 7, 2023, doi: https://doi.org/10.3390/su15075930.

T. Rahman et al., “Transfer Learning with Deep Convolutional Neural Network ( CNN ) for Pneumonia Detection Using,” Appl. Sci., vol. 10, no. 9, 2020, doi: https://doi.org/10.3390/app10093233.

M. Fernando et al., “Melanoma diagnosis using deep learning techniques on dermatoscopic images,” BMC Med. Imaging, hal. 1–11, 2021, doi: 10.1186/s12880-020-00534-8.

M. S. Al-huseiny dan A. S. Sajit, “Transfer learning with GoogLeNet for detection of lung cancer,” Indones. J. Electr. Eng. Comput. Sci., vol. 22, no. 2, hal. 1078–1086, 2021, doi: 10.11591/ijeecs.v22.i2.pp1078-1086.

M. A. Wakili et al., “Classification of Breast Cancer Histopathological Images Using DenseNet and Transfer Learning,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: https://doi.org/10.1155/2022/8904768.

Y. Zhang, J. Li, S. Wei, F. Zhou, dan D. Li, “Heartbeats Classification Using Hybrid Time-Frequency Analysis and Transfer Learning Based on ResNet,” IEEE J. Biomed. Heal. Informatics, vol. 25, no. 11, 2021, doi: 10.1109/JBHI.2021.3085318.

N. L. Tun, A. Gavrilov, N. M. Tun, D. M. Trieu, dan H. Aung, “Remote Sensing Data Classification Using A Hybrid Pre-Trained VGG16 CNN- SVM Classifier,” IEEE Conf. Russ. Young Res. Electr. Electron. Eng., 2021, doi: 10.1109/ElConRus51938.2021.9396706.

D. U. K. Putri, D. N. Pratomo, dan Azhari, “Hybrid convolutional neural networks-support vector machine classifier with dropout for Javanese character recognition,” TELKOMNIKA Telecommun. Comput. Electron. Control, vol. 21, no. 2, hal. 346–353, 2023, doi: 10.12928/TELKOMNIKA.v21i2.24266.

M. Diqi, R. N. Wijaya, dan M. F. M, “Pooling Comparison in CNN Architecture for Javanese Script Classification,” Int. J. Informatics Comput., vol. 3, no. 2, 2021, doi: 10.35842/ijicom.

M. Diqi dan M. F. Muhdalifah, “Design and Building Javanese Script Classification in The State Museum of Sonobudoyo Yogyakarta,” Int. J. Informatics Comput., vol. 1, no. 2, hal. 34–35, 2019, doi: https://doi.org/10.35842/ijicom.v1i2.18.

Refbacks

  • There are currently no refbacks.




Scientific Journal of Informatics (SJI)
p-ISSN 2407-7658 | e-ISSN 2460-0040
Published By Department of Computer Science Universitas Negeri Semarang
Website: https://journal.unnes.ac.id/nju/index.php/sji
Email: [email protected]

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.