Plasmodium falciparum Identification Using Otsu Thresholding Segmentation Method Based on Microscopic Blood Image

Nurul Huda(1), Alfa Yuliana Dewi(2), Adiyah Mahiruna(3),


(1) Department of Software Engineering, Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang, Indonesia
(2) Department of Information Technology, Universitas Muhammadiyah Pekajangan Pekalongan, Indonesia
(3) Department of Software Engineering, Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang, Indonesia

Abstract

Purpose: Malaria, particularly the Falciparum strain, is a deadly disease caused by Plasmodium falciparum. Malaria diagnosis heavily relies on a microscopist's expertise. To expedite identification, machine learning research has been extensively conducted. However, it has not yet achieved high accuracy, partly due to the use of microscopic images as the dataset. Otsu thresholding, an optimal image segmentation method, maximizes pixel variance to separate the foreground (objects of interest) from the background, which is especially effective in various lighting conditions. Otsu thresholding aims to enhance accuracy and reliability in detecting and classifying Plasmodium falciparum parasites in blood samples.

Methods: Dataset of microscopic images of thin blood smears with Plasmodium falciparum, taken from several sources, such as the UC Irvine Machine Learning Repository (UCI), National Institutes of Health (NIH), Kaggle, and Public Health Image Library (PHIL). The methodology combines various image processing techniques, including illumination correction, contrast enhancement, and noise filtering, to prepare the images effectively. The subsequent segmentation using Otsu thresholding method isolates the parasite regions of interest. The classification process involving CNN and SVM evaluates the performance of accuracy to identify different stages of Plasmodium falciparum parasites.

Results: The research found the effectiveness of the Otsu thresholding segmentation method in identifying Plasmodium falciparum parasites in microscopic images. By utilizing Convolutional Neural Network (CNN) and Support Vector Machine (SVM) classifiers, the study achieved impressive accuracy rates, with the CNN achieving 96.5% accuracy and the SVM achieving 95.7%.

Novelty: This research recorded significant improvement over previous studies that utilized feature extraction and selection methods. At the same time, previous research achieved an accuracy of 82.67. The key innovation here is the adoption of the Otsu thresholding segmentation method, which enhances the identification of Plasmodium falciparum parasites in microscopic images by integrating traditional image processing techniques like Otsu thresholding with modern machine learning methods like CNN and SVM. This significant improvement suggests that the proposed approach offers a more robust and reliable solution for malaria diagnosis.

Keywords

Image processing; Otsu thresholding; classification

Full Text:

PDF

References

D. Crossed D Signumic, D. Keco, and Z. Mašetic, “Automatization of Microscopy Malaria Diagnosis Using Computer Vision and Random Forest Method,” IFAC-PapersOnLine, vol. 55, no. 4, pp. 80–84, 2022, doi: 10.1016/j.ifacol.2022.06.013.

D. O. Oyewola, E. G. Dada, S. Misra, and R. Damaševičius, “A Novel Data Augmentation Convolutional Neural Network for Detecting Malaria Parasite in Blood Smear Images,” Appl. Artif. Intell., vol. 36, no. 1, 2022, doi: 10.1080/08839514.2022.2033473.

R. J. Longley et al., “Plasmodium vivax malaria serological exposure markers: Assessing the degree and implications of cross-reactivity with P. knowlesi,” Cell Reports Med., vol. 3, no. 6, p. 100662, 2022, doi: 10.1016/j.xcrm.2022.100662.

A. de Souza Oliveira, M. Guimarães Fernandes Costa, M. das Graças Vale Barbosa, and C. Ferreira Fernandes Costa Filho, “A new approach for malaria diagnosis in thick blood smear images,” Biomed. Signal Process. Control, vol. 78, no. April, 2022, doi: 10.1016/j.bspc.2022.103931.

R. Saikia and S. S. Devi, “White Blood Cell Classification based on Gray Level Co-occurrence Matrix with Zero Phase Component Analysis Approach,” Procedia Comput. Sci., vol. 218, pp. 1977–1984, 2023, doi: 10.1016/j.procs.2023.01.174.

R. Rosita, D. Ananda Agustina Pertiwi, and O. Gina Khoirunnisa, “Prediction of Hospital Intesive Patients Using Neural Network Algorithm,” J. Soft Comput. Explor., vol. 3, no. 1, pp. 8–11, 2022, doi: 10.52465/joscex.v3i1.61.

A. Loddo, C. Fadda, and C. Di Ruberto, “An Empirical Evaluation of Convolutional Networks for Malaria Diagnosis,” J. Imaging, vol. 8, no. 3, 2022, doi: 10.3390/jimaging8030066.

M. Abdel-Basset, R. Mohamed, M. Abouhawwash, S. S. Askar, and A. A. Tantawy, “An Efficient Multilevel Threshold Segmentation Method for Breast Cancer Imaging Based on Metaheuristics Algorithms: Analysis and Validations,” Int. J. Comput. Intell. Syst., vol. 16, no. 1, 2023, doi: 10.1007/s44196-023-00282-x.

P. A. Pitoy and I. P. G. H. Suputra, “Dermoscopy Image Segmentation in Melanoma Skin Cancer using Otsu Thresholding Method,” JELIKU (Jurnal Elektron. Ilmu Komput. Udayana), vol. 9, no. 3, p. 397, 2021, doi: 10.24843/jlk.2021.v09.i03.p11.

M. Wattana and T. Boonsri, “Improvement of complete malaria cell image segmentation,” 2017 12th Int. Conf. Digit. Inf. Manag. ICDIM 2017, vol. 2018-Janua, no. Icdim, pp. 319–323, 2018, doi: 10.1109/ICDIM.2017.8244655.

V. Magotra and M. K. Rohil, “Malaria Diagnosis Using a Lightweight Deep Convolutional Neural Network,” Int. J. Telemed. Appl., vol. 2022, 2022, doi: 10.1155/2022/4176982.

B. Hemalatha, B. Karthik, C. V. Krishna Reddy, and A. Latha, “Deep learning approach for segmentation and classification of blood cells using enhanced CNN,” Meas. Sensors, vol. 24, no. September, p. 100582, 2022, doi: 10.1016/j.measen.2022.100582.

A. Alassaf and M. Y. Sikkandar, “Intelligent Deep Transfer Learning Based Malaria Parasite Detection and Classification Model Using Biomedical Image,” Comput. Mater. Contin., vol. 72, no. 3, pp. 5273–5285, 2022, doi: 10.32604/cmc.2022.025577.

S. Rajaraman et al., “Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images,” PeerJ, vol. 6, p. e4568, 2018, doi: 10.7717/peerj.4568.

A. A. Hakim, E. Juanara, and R. Rispandi, “Mask Detection System with Computer Vision-Based on CNN and YOLO Method Using Nvidia Jetson Nano,” J. Inf. Syst. Explor. Res., vol. 1, no. 2, pp. 109–122, 2023, doi: 10.52465/joiser.v1i2.175.

Z. Jan, A. Khan, M. Sajjad, K. Muhammad, S. Rho, and I. Mehmood, “A review on automated diagnosis of malaria parasite in microscopic blood smears images,” Multimed. Tools Appl., vol. 77, no. 8, pp. 9801–9826, 2018, doi: 10.1007/s11042-017-4495-2.

M. Yebasse, K. J. Cheoi, and J. Ko, “Malaria Disease Cell Classification With Highlighting Small Infected Regions,” IEEE Access, vol. 11, no. January, pp. 15945–15953, 2023, doi: 10.1109/ACCESS.2023.3245025.

L. Bichler, A. Radermacher, and A. Schürr, “Evaluating UML extensions for modeling real-time systems,” Proc. - Int. Work. Object-Oriented Real-Time Dependable Syst. WORDS, vol. 2002-Janua, no. Words, pp. 271–278, 2002, doi: 10.1109/WORDS.2002.1000062.

Y. M. Kassim et al., “Clustering-Based Dual Deep Learning Architecture for Detecting Red Blood Cells in Malaria Diagnostic Smears,” IEEE J. Biomed. Heal. Informatics, vol. 25, no. 5, pp. 1735–1746, 2021, doi: 10.1109/JBHI.2020.3034863.

K. Manning, X. Zhai, and W. Yu, “Image analysis and machine learning-based malaria assessment system,” Digit. Commun. Networks, vol. 8, no. 2, pp. 132–142, 2022, doi: 10.1016/j.dcan.2021.07.011.

E. Z. Astuti, C. A. Sari, M. Salsabila, H. Sutrisno, and E. Hari, “Capital Optical Character Recognition Using Neural Network Based on Gaussian Filter,” vol. 10, no. 3, pp. 261–270, 2023, doi: 10.15294/sji.v10i3.43438.

D. Setyawan, R. Wardoyo, M. E. Wibowo, and E. E. H. Murhandarwati, “Classification of Plasmodium falciparum based on textural and morphological features,” Int. J. Electr. Comput. Eng., vol. 12, no. 5, pp. 5036–5048, 2022, doi: 10.11591/ijece.v12i5.pp5036-5048.

W. M. Fong Amaris, C. Martinez, L. J. Cortés-Cortés, and D. R. Suárez, “Image features for quality analysis of thick blood smears employed in malaria diagnosis,” Malar. J., vol. 21, no. 1, pp. 1–12, 2022, doi: 10.1186/s12936-022-04064-2.

A. Singh, M. Mehra, A. Kumar, M. Niranjannaik, D. Priya, and K. Gaurav, “Leveraging hybrid machine learning and data fusion for accurate mapping of malaria cases using meteorological variables in western India,” Intell. Syst. with Appl., vol. 17, no. February 2022, p. 200164, 2023, doi: 10.1016/j.iswa.2022.200164.

P. A. Pattanaik, T. Swarnkar, and D. Swain, “Deep filter bridge for malaria identification and classification in microscopic blood smear images,” Int. J. Adv. Intell. Paradig., vol. 20, no. 1–2, pp. 126–137, 2021, doi: 10.1504/IJAIP.2021.117611.

H. A. Nugroho, I. M. Dendi Maysanjaya, N. A. Setiawan, E. E. H. Murhandarwati, and W. K. Z. Oktoeberza, “Feature analysis for stage identification of Plasmodium vivax based on digital microscopic image,” Indones. J. Electr. Eng. Comput. Sci., vol. 13, no. 2, pp. 721–728, 2019, doi: 10.11591/ijeecs.v13.i2.pp721-728.

S. N. A. M. Kanafiah, M. Y. Mashor, Z. Mohamed, Y. C. Way, S. A. A. Shukor, and Y. Jusman, “An Intelligent Classification System for Trophozoite Stages in Malaria Species,” Intell. Autom. Soft Comput., vol. 34, no. 1, pp. 687–697, 2022, doi: 10.32604/iasc.2022.024361.

S. Shambhu, D. Koundal, P. Das, V. T. Hoang, K. Tran-Trung, and H. Turabieh, “Computational Methods for Automated Analysis of Malaria Parasite Using Blood Smear Images: Recent [1] D. Crossed D Signumic, D. Keco, and Z. Mašetic, “Automatization of Microscopy Malaria Diagnosis Using Computer Vision and Random Forest Method,” IFAC-PapersOnLine, vol. 55, no. 4, pp. 80–84, 2022, doi: 10.1016/j.ifacol.2022.06.013.

D. O. Oyewola, E. G. Dada, S. Misra, and R. Damaševičius, “A Novel Data Augmentation Convolutional Neural Network for Detecting Malaria Parasite in Blood Smear Images,” Appl. Artif. Intell., vol. 36, no. 1, 2022, doi: 10.1080/08839514.2022.2033473.

R. J. Longley et al., “Plasmodium vivax malaria serological exposure markers: Assessing the degree and implications of cross-reactivity with P. knowlesi,” Cell Reports Med., vol. 3, no. 6, p. 100662, 2022, doi: 10.1016/j.xcrm.2022.100662.

A. de Souza Oliveira, M. Guimarães Fernandes Costa, M. das Graças Vale Barbosa, and C. Ferreira Fernandes Costa Filho, “A new approach for malaria diagnosis in thick blood smear images,” Biomed. Signal Process. Control, vol. 78, no. April, 2022, doi: 10.1016/j.bspc.2022.103931.

R. Saikia and S. S. Devi, “White Blood Cell Classification based on Gray Level Co-occurrence Matrix with Zero Phase Component Analysis Approach,” Procedia Comput. Sci., vol. 218, pp. 1977–1984, 2023, doi: 10.1016/j.procs.2023.01.174.

R. Rosita, D. Ananda Agustina Pertiwi, and O. Gina Khoirunnisa, “Prediction of Hospital Intesive Patients Using Neural Network Algorithm,” J. Soft Comput. Explor., vol. 3, no. 1, pp. 8–11, 2022, doi: 10.52465/joscex.v3i1.61.

A. Loddo, C. Fadda, and C. Di Ruberto, “An Empirical Evaluation of Convolutional Networks for Malaria Diagnosis,” J. Imaging, vol. 8, no. 3, 2022, doi: 10.3390/jimaging8030066.

M. Abdel-Basset, R. Mohamed, M. Abouhawwash, S. S. Askar, and A. A. Tantawy, “An Efficient Multilevel Threshold Segmentation Method for Breast Cancer Imaging Based on Metaheuristics Algorithms: Analysis and Validations,” Int. J. Comput. Intell. Syst., vol. 16, no. 1, 2023, doi: 10.1007/s44196-023-00282-x.

P. A. Pitoy and I. P. G. H. Suputra, “Dermoscopy Image Segmentation in Melanoma Skin Cancer using Otsu Thresholding Method,” JELIKU (Jurnal Elektron. Ilmu Komput. Udayana), vol. 9, no. 3, p. 397, 2021, doi: 10.24843/jlk.2021.v09.i03.p11.

M. Wattana and T. Boonsri, “Improvement of complete malaria cell image segmentation,” 2017 12th Int. Conf. Digit. Inf. Manag. ICDIM 2017, vol. 2018-Janua, no. Icdim, pp. 319–323, 2018, doi: 10.1109/ICDIM.2017.8244655.

V. Magotra and M. K. Rohil, “Malaria Diagnosis Using a Lightweight Deep Convolutional Neural Network,” Int. J. Telemed. Appl., vol. 2022, 2022, doi: 10.1155/2022/4176982.

B. Hemalatha, B. Karthik, C. V. Krishna Reddy, and A. Latha, “Deep learning approach for segmentation and classification of blood cells using enhanced CNN,” Meas. Sensors, vol. 24, no. September, p. 100582, 2022, doi: 10.1016/j.measen.2022.100582.

A. Alassaf and M. Y. Sikkandar, “Intelligent Deep Transfer Learning Based Malaria Parasite Detection and Classification Model Using Biomedical Image,” Comput. Mater. Contin., vol. 72, no. 3, pp. 5273–5285, 2022, doi: 10.32604/cmc.2022.025577.

S. Rajaraman et al., “Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images,” PeerJ, vol. 6, p. e4568, 2018, doi: 10.7717/peerj.4568.

A. A. Hakim, E. Juanara, and R. Rispandi, “Mask Detection System with Computer Vision-Based on CNN and YOLO Method Using Nvidia Jetson Nano,” J. Inf. Syst. Explor. Res., vol. 1, no. 2, pp. 109–122, 2023, doi: 10.52465/joiser.v1i2.175.

Z. Jan, A. Khan, M. Sajjad, K. Muhammad, S. Rho, and I. Mehmood, “A review on automated diagnosis of malaria parasite in microscopic blood smears images,” Multimed. Tools Appl., vol. 77, no. 8, pp. 9801–9826, 2018, doi: 10.1007/s11042-017-4495-2.

M. Yebasse, K. J. Cheoi, and J. Ko, “Malaria Disease Cell Classification With Highlighting Small Infected Regions,” IEEE Access, vol. 11, no. January, pp. 15945–15953, 2023, doi: 10.1109/ACCESS.2023.3245025.

L. Bichler, A. Radermacher, and A. Schürr, “Evaluating UML extensions for modeling real-time systems,” Proc. - Int. Work. Object-Oriented Real-Time Dependable Syst. WORDS, vol. 2002-Janua, no. Words, pp. 271–278, 2002, doi: 10.1109/WORDS.2002.1000062.

Y. M. Kassim et al., “Clustering-Based Dual Deep Learning Architecture for Detecting Red Blood Cells in Malaria Diagnostic Smears,” IEEE J. Biomed. Heal. Informatics, vol. 25, no. 5, pp. 1735–1746, 2021, doi: 10.1109/JBHI.2020.3034863.

K. Manning, X. Zhai, and W. Yu, “Image analysis and machine learning-based malaria assessment system,” Digit. Commun. Networks, vol. 8, no. 2, pp. 132–142, 2022, doi: 10.1016/j.dcan.2021.07.011.

E. Z. Astuti, C. A. Sari, M. Salsabila, H. Sutrisno, and E. Hari, “Capital Optical Character Recognition Using Neural Network Based on Gaussian Filter,” vol. 10, no. 3, pp. 261–270, 2023, doi: 10.15294/sji.v10i3.43438.

D. Setyawan, R. Wardoyo, M. E. Wibowo, and E. E. H. Murhandarwati, “Classification of Plasmodium falciparum based on textural and morphological features,” Int. J. Electr. Comput. Eng., vol. 12, no. 5, pp. 5036–5048, 2022, doi: 10.11591/ijece.v12i5.pp5036-5048.

W. M. Fong Amaris, C. Martinez, L. J. Cortés-Cortés, and D. R. Suárez, “Image features for quality analysis of thick blood smears employed in malaria diagnosis,” Malar. J., vol. 21, no. 1, pp. 1–12, 2022, doi: 10.1186/s12936-022-04064-2.

A. Singh, M. Mehra, A. Kumar, M. Niranjannaik, D. Priya, and K. Gaurav, “Leveraging hybrid machine learning and data fusion for accurate mapping of malaria cases using meteorological variables in western India,” Intell. Syst. with Appl., vol. 17, no. February 2022, p. 200164, 2023, doi: 10.1016/j.iswa.2022.200164.

P. A. Pattanaik, T. Swarnkar, and D. Swain, “Deep filter bridge for malaria identification and classification in microscopic blood smear images,” Int. J. Adv. Intell. Paradig., vol. 20, no. 1–2, pp. 126–137, 2021, doi: 10.1504/IJAIP.2021.117611.

H. A. Nugroho, I. M. Dendi Maysanjaya, N. A. Setiawan, E. E. H. Murhandarwati, and W. K. Z. Oktoeberza, “Feature analysis for stage identification of Plasmodium vivax based on digital microscopic image,” Indones. J. Electr. Eng. Comput. Sci., vol. 13, no. 2, pp. 721–728, 2019, doi: 10.11591/ijeecs.v13.i2.pp721-728.

S. N. A. M. Kanafiah, M. Y. Mashor, Z. Mohamed, Y. C. Way, S. A. A. Shukor, and Y. Jusman, “An Intelligent Classification System for Trophozoite Stages in Malaria Species,” Intell. Autom. Soft Comput., vol. 34, no. 1, pp. 687–697, 2022, doi: 10.32604/iasc.2022.024361.

S. Shambhu, D. Koundal, P. Das, V. T. Hoang, K. Tran-Trung, and H. Turabieh, “Computational Methods for Automated Analysis of Malaria Parasite Using Blood Smear Images: Recent Advances,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/3626726.

B. Preim and C. Botha, Image Analysis for Medical Visualization. 2014. doi: 10.1016/b978-0-12-415873-3.00004-3.

A. Y. D. N.Huda, S.Y. Prayogi, M.A. Ahmad, “Klasifikasi Malaria Menggunakan Citra Sel Darah Merah Dengan Algoritma Convolutional Neural Network,” J. Inf. Syst., vol. 7, no. 1, pp. 166–177, 2022.

A. Loddo, C. Di Ruberto, M. Kocher, and G. Prod’hom, “Mp-idb: The malaria parasite image database for image processing and analysis,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11379, pp. 57–65, 2019, doi: 10.1007/978-3-030-13835-6_7.

H. A. Mohammed and I. A. M. Abdelrahman, “Detection and classification of Malaria in thin blood slide images,” Proc. - 2017 Int. Conf. Commun. Control. Comput. Electron. Eng. ICCCCEE 2017, pp. 1–5, 2017, doi: 10.1109/ICCCCEE.2017.7866700.

I. Enhancement, “Retinex-Based Fast Algorithm for Low-Light Image Enhancement,” 2021.

H. Lin and C. Wei, “Performance Analysis of Retinex Based Algorithms for Enhancement of Low Light Images Performance Analysis of Retinex Based Algorithms for Enhancement of Low Light Images,” 2021, doi: 10.1088/1742-6596/1964/6/062046.

J. Somasekar, G. Ramesh, G. Ramu, P. Dileep Kumar Reddy, B. Eswara Reddy, and C. H. Lai, “A dataset for automatic contrast enhancement of microscopic malaria infected blood RGB images,” Data Br., vol. 27, p. 104643, 2019, doi: 10.1016/j.dib.2019.104643.

J. W. Yodha and A. W. Kurniawan, “Pengenalan Motif Batik Menggunakan Deteksi Tepi Canny Dan K-Nearest Neighbor,” Techno.COM, vol. 13, no. 4, November, pp. 251–262, 2014.

K. H. Rhee, “Forgery Image Detection of Gaussian Filtering by Support Vector Machine Using Edge Characteristics,” pp. 231–236, 2017.

A. H. Alharbi, C. V. Aravinda, J. Shetty, M. Y. Jabarulla, K. B. Sudeepa, and S. K. Singh, “Computational Models-Based Detection of Peripheral Malarial Parasites in Blood Smears,” Contrast Media Mol. Imaging, vol. 2022, 2022, doi: 10.1155/2022/9171343.

Venkatesh, Y. Nagaraju, T. S. Sahana, S. Swetha, and S. U. Hegde, “Transfer Learning based Convolutional Neural Network Model for Classification of Mango Leaves Infected by Anthracnose,” 2020 IEEE Int. Conf. Innov. Technol. INOCON 2020, 2020, doi: 10.1109/INOCON50539.2020.9298269.

F. Abdurahman, K. A. Fante, and M. Aliy, “Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models,” BMC Bioinformatics, vol. 22, no. 1, pp. 1–17, 2021, doi: 10.1186/s12859-021-04036-4.

S. V. Militante, “Malaria Disease Recognition through Adaptive Deep Learning Models of Convolutional Neural Network,” ICETAS 2019 - 2019 6th IEEE Int. Conf. Eng. Technol. Appl. Sci., 2019, doi: 10.1109/ICETAS48360.2019.9117446.

H. Hasan, H. Z. M. Shafri, and M. Habshi, “A Comparison between Support Vector Machine (SVM) and Convolutional Neural Network (CNN) Models for Hyperspectral Image Classification,” IOP Conf. Ser. Earth Environ. Sci., vol. 357, no. 1, 2019, doi: 10.1088/1755-1315/357/1/012035.

dan M. A. P. Y. N. Fuadah, I. D. Ubaidullah, N. Ibrahim, F. F. Taliningsing, N. K. Sy, “Optimasi Convolutional Neural Network dan K-Fold Cross Validation pada Sistem Klasifikasi Glaukoma,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 10, no. 3, p. 728, 2022, doi: 10.26760/elkomika.v10i3.728.

Refbacks

  • There are currently no refbacks.




Scientific Journal of Informatics (SJI)
p-ISSN 2407-7658 | e-ISSN 2460-0040
Published By Department of Computer Science Universitas Negeri Semarang
Website: https://journal.unnes.ac.id/nju/index.php/sji
Email: [email protected]

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.