YOLO vs. CNN Algorithms: A Comparative Study in Masked Face Recognition
(1) Department of Electrical Engineering, Institut Teknologi Kalimantan, Balikpapan, Indonesia
(2) Department of Electrical Engineering, Institut Teknologi Kalimantan, Balikpapan, Indonesia
(3) Department of Electrical Engineering, Institut Teknologi Kalimantan, Balikpapan, Indonesia
(4) Department of Engineering, Universitas Airlangga, Surabaya, Indonesia
(5) Department of Electrical Engineering, University of Malaya, Malaysia
Abstract
Purpose: This research investigates the effectiveness of YOLO (You Only Look Once) and Convolutional Neural Network (CNN) in real-time face mask recognition, addressing the challenges posed by mask-wearing in infectious disease prevention.
Method: Utilizing a diverse dataset and employing YOLO's object detection and a combined Haar Cascade Algorithm with CNN, the study evaluated key performance indicators, including accuracy, framerate, and F1 Score.
Results: Results indicated that CNN outperformed YOLO in accuracy (99.3% vs. 79.3%) but operated at a slightly lower framerate. YOLO excelled in recall and precision, presenting a compelling choice for specific application needs. The research underscores the importance of considering factors beyond accuracy for informed decision-making in the realm of face mask recognition.
Novelty: This research evaluates the real-time performance of YOLO and CNN algorithms in masked face recognition, highlighting the crucial balance between framerate efficiency and detection accuracy.Keywords
Full Text:
PDFReferences
J. Harika, P. Baleeshwar, K. Navya, and H. Shanmugasundaram, “A Review on Artificial Intelligence with Deep Human Reasoning,” Int. Conf. Appl. Artif. Intell. Comput., 2022, doi: 10.1109/ICAAIC53929.2022.9793310.
R. Rofik, R. Aulia, K. Musaadah, S. S. F. Ardyani, and A. A. Hakim, “Optimization of Credit Scoring Model Using Stacking Ensemble Learning and Oversampling Techniques,” J. Inf. Syst. Explor. Res., vol. 2, no. 1, pp. 11–20, 2023, doi: 10.52465/joiser.v2i1.203.
H. Hadiq, S. Solehatin, D. Djuniharto, M. A. Muslim, and S. N. Salahudin, “Comparison of the suitability of the otsu method thresholding and multilevel thresholding for flower image segmentation,” J. Soft Comput. Explor., vol. 4, no. 4, pp. 242–249, 2023, doi: 10.52465/joscex.v4i4.266.
G. G. Dordinejad and H. Çevikalp, “Face Frontalization for Image Set Based Face Recognition,” Signal Process. Commun. Appl. Conf., 2022, doi: 10.1109/SIU55565.2022.9864911.
A. Adimas and S. Y. Irianto, “Image Sketch Based Criminal Face Recognition Using Content Based Image Retrieval,” Sci. J. Informatics, vol. 8, no. 2, pp. 176–182, 2021, doi: 10.15294/sji.v8i2.27865.
Y. Lin and H. Xie, “Face Gender Recognition based on Face Recognition Feature Vectors,” IEEE 3rd Int. Conf. Inf. Syst. Comput. Aided Educ., 2020, doi: 10.1109/ICISCAE51034.2020.9236905.
A. K. Sirivarshitha, K. Sravani, K. S. Priya, and V. Bhavani, “An approach for Face Detection and Face Recognition using OpenCV and Face Recognition Libraries in Python,” 9th Int. Conf. Adv. Comput. Commun. Syst., 2023, doi: 10.1109/ICACCS57279.2023.10113066.
F. Gu, J. Lu, G. Xia, and Z. Feng, “Face Verification Technology Based on FaceNet Similarity Recognition Network,” IEEE 10th Data Driven Control Learn. Syst. Conf., 2021, doi: 10.1109/DDCLS52934.2021.9455715.
S. A. A. and S. M. Hatture, “Face Recognition Through Symbolic Modeling of Face Graphs and Texture,” Int. J. Pattern Recognit. Artif. Intell., vol. 33, no. 12, 2021, doi: https://doi.org/10.1142/S0218001419560081.
B. Contoh et al., “No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 1, no. 1, p. 2019, 2019, [Online]. Available: http://www.ghbook.ir/index.php?name=فرهنگ و رسانه های نوین&option=com_dbook&task=readonline&book_id=13650&page=73&chkhashk=ED9C9491B4&Itemid=218〈=fa&tmpl=component%0Ahttp://www.albayan.ae%0Ahttps://scholar.google.co.id/scholar?hl=en&q=APLIKASI+PENGENA
S. P. Samadhi and E. Izquierdo, Deep-learned faces: a survey, vol. 2020, no. 1. EURASIP Journal on Image and Video Processing, 2020. doi: 10.1186/s13640-020-00510-w.
M. Wang and W. Deng, “Deep face recognition: A survey,” Neurocomputing, vol. 429, pp. 215–244, 2021, doi: 10.1016/j.neucom.2020.10.081.
M. Norouzi, “A Survey on Face Recognition Based on Deep Neural Networks,” pp. 1–15, 2022, [Online]. Available: https://doi.org/10.21203/rs.3.rs-1367031/v1
I. Q. Mundial, M. S. U. Hassan, M. I. Tiwana, W. S. Qureshi, and E. Alanazi, “Towards Facial Recognition Problem in COVID-19 Pandemic,” 4rd Int. Conf. Electr. Telecommun. Comput. Eng., 2020, doi: 10.1109/ELTICOM50775.2020.9230504.
Y. Li, K. Guo, Y. Lu, and L. Liu, “Cropping and attention based approach for masked face recognition,” Appl. Intell., vol. 51, no. 5, pp. 3012–3025, 2021, doi: 10.1007/s10489-020-02100-9.
A. A. Shaik, R. T. Prabu, and S. Radhika, “Detection of Face Mask using Convolutional Neural Network (CNN) based Real-Time Object Detection Algorithm You Only Look Once-V3 (YOLO-V3) Compared with Single-Stage Detector (SSD) Algorithm to Improve Precision,” Int. Conf. Adv. Comput. Commun. Appl. Informatics, 2023, doi: 10.1109/ACCAI58221.2023.10200890.
S. Abbasi, H. Abdi, and A. Ahmadi, “A Face-Mask Detection Approach based on YOLO Applied for a New Collected Dataset,” 26th Int. Comput. Conf. Comput. Soc. Iran, 2021, doi: 10.1109/CSICC52343.2021.9420599.
Y. Ma, J. Yang, Z. Li, and Z. Ma, “YOLO-Cigarette: An effective YOLO Network for outdoor smoking Real-time Object Detection,” Ninth Int. Conf. Adv. Cloud Big Data, 2021, doi: 10.1109/CBD54617.2021.00029.
M. Zou et al., “Feature Compression Applications of Genetic Algorithm,” Front. Genet., vol. 13, no. March, pp. 1–13, 2022, doi: 10.3389/fgene.2022.757524.
J. Shah and A. K. Pandey, “Estimation of Face Attributes Using Standard CNN Features,” 3rd Int. Conf. Adv. Comput. Innov. Technol. Eng., 2023, doi: 10.1109/ICACITE57410.2023.10183194.
W. Yang, D. BO, and L. S. Tong, “TS-YOLO:An efficient YOLO Network for Multi-scale Object Detection,” IEEE 6th Inf. Technol. Mechatronics Eng. Conf., 2022, doi: 10.1109/ITOEC53115.2022.9734458.
H. Wang and J. Han, “Research on military target detection method based on YOLO method,” IEEE 3rd Int. Conf. Inf. Technol. Big Data Artif. Intell., 2023, doi: 10.1109/ICIBA56860.2023.10165623.
S. F. Kak, F. M. Mustafa, and A. Varol, “Design and Enhancement of a CNN Model to Augment the Face Recognition Accuracy,” 3rd Int. Informatics Softw. Eng. Conf., 2022, doi: 10.1109/IISEC56263.2022.9998236.
O. P. Yakubu, A. Y. A. . M. Ismail, M. L. Abdulrahman, I. Z. Yahkubu, and L. Step, “A Deep Learning Approach for Detecting Face Mask Using an Improved Yolo-V2 With Squeezenet,” IEEE 6th Conf. Inf. Commun. Technol., 2022, doi: 10.1109/CICT56698.2022.9997956.
C. Liu and J. Liu, “Application Analysis of Face Recognition Technology Based on Computer Vision,” 3rd Int. Acad. Exch. Conf. Sci. Technol. Innov., 2021, doi: 10.1109/IAECST54258.2021.9695689.
S. Watcharabutsarakham, S. Suntiwichaya, C. Junlouchai, and A. Kitvimorat, “Comparison of Face Classification with Single and Multi-model base on CNN,” 15th Int. Jt. Symp. Artif. Intell. Nat. Lang. Process., 2020, doi: 10.1109/iSAI-NLP51646.2020.9376825.
V. Mudeng, M. N. Farid, G. Ayana, and S.-W. Choe, “Domain and Histopathology Adaptations-Based Classification for Malignancy Grading System,” SSRN Electron. J., 2022, doi: 10.1016/j.ajpath.2023.07.007.
K. E. Ewald, Z. L. Zeng, C. B. Mawuli, H. S. Abubakar, and A. Victor, “Applying CNN with Extracted Facial Patches using 3 Modalities to Detect 3D Face Spoof,” 17th Int. Comput. Conf. Wavelet Act. Media Technol. Inf. Process., 2020, doi: https://doi.org/10.1109/iccwamtip51612.2020.9317329.
F. Firdaus and R. Munir, “Masked Face Recognition using Deep Learning based on Unmasked Area,” 2022 Second Int. Conf. Power, Control Comput. Technol., 2022, doi: 10.1109/ICPC2T53885.2022.9776651.
A. E. B. Alawi and A. M. Qasem, “Lightweight CNN-based Models for Masked Face Recognition,” 2021 Int. Congr. Adv. Technol. Eng., 2021, doi: 10.1109/ICOTEN52080.2021.9493424.
N. Ragesh, R. Ranjith, and P. Sivraj, “Fast R-CNN based Masked Face Recognition for Access Control System,” 2022 4th Int. Conf. Inven. Res. Comput. Appl., 2022, doi: 10.1109/ICIRCA54612.2022.9985509.
M. Mobaraki et al., “Masked Face Recognition Using Convolutional Neural Networks and Similarity Analysis,” 2023 24th Int. Conf. Digit. Signal Process., 2023, doi: 10.1109/DSP58604.2023.10167977.
Refbacks
- There are currently no refbacks.
Scientific Journal of Informatics (SJI)
p-ISSN 2407-7658 | e-ISSN 2460-0040
Published By Department of Computer Science Universitas Negeri Semarang
Website: https://journal.unnes.ac.id/nju/index.php/sji
Email: [email protected]
This work is licensed under a Creative Commons Attribution 4.0 International License.