Performance Comparison Between LeNet And MobileNet In Convolutional Neural Network for Lampung Batik Image Identification

Rico Andrian(1), Hans Christian Herwanto(2), Rahman Taufik(3), Didik Kurniawan(4),


(1) Computer Science Study Program, Universitas Lampung, Indonesia
(2) Computer Science Study Program, Universitas Lampung, Indonesia
(3) Computer Science Study Program, Universitas Lampung, Indonesia
(4) Computer Science Study Program, Universitas Lampung, Indonesia

Abstract

Purpose: The rich cultural heritage of Indonesia includes the intricate art of batik, which varies across regions with unique patterns and motifs. This study focuses on Lampung batik, a distinctive type of batik, representing Lampung Province, Indonesia. Leveraging Convolutional Neural Network (CNN) architectures, namely LeNet-5 and MobileNet, the research compares their effectiveness in recognizing and classifying Lampung batik motifs. Data augmentation techniques, including rotation, brightness, and zoom, were employed to enhance the dataset and improve model performance.

Methods: The study collected 500 Lampung batik images categorized into 10 classes which were then augmented and divided into training, validation, and testing sets. The model was created using a Deep Learning approach, LeNet And MobileNet. Both models were trained using identical hyperparameters and evaluated based on their accuracy in classifying Lampung batik motifs.

Results: The results demonstrate an accuracy of 99.33% for LeNet-5 and 98.00% for MobileNet, outperforming previous studies. LeNet-5, particularly with augmentation, exhibited superior precision and recall in classifying Lampung batik motifs. This research underscores the efficacy of CNN architectures, coupled with data augmentation techniques, in accurately identifying intricate cultural artifacts like Lampung batik.

Novelty: The Dharmagita learning model using a mobile application is a new model that has not existed before.

Keywords

Lampung batik; Convolutional Neural Network; LeNet; MobileNet

Full Text:

PDF

References

A. A, “Sejarah Batik Dan Motif Batik di Indonesia,” in Seminar Nasional Riset Inovatif II, 2014, pp. 539–545.

T. G. Prahasiwi, S. Kurniawan, W. Satriaji, Suhartono, S. N. Endah, and R. Kusumaningrum, “Usability Testing for Batik 4.0: A Web Application for Generating 3D Batik Semarangan,” in 2018 2nd International Conference on Informatics and Computational Sciences (ICICoS), IEEE, Oct. 2018, pp. 1–6. doi: 10.1109/ICICOS.2018.8621843.

F. A. Putra et al., “Classification of Batik Authenticity Using Convolutional Neural Network Algorithm with Transfer Learning Method,” in 2021 Sixth International Conference on Informatics and Computing (ICIC), IEEE, Nov. 2021, pp. 1–6. doi: 10.1109/ICIC54025.2021.9632937.

D. M. S. Arsa and A. A. N. H. Susila, “VGG16 in Batik Classification based on Random Forest,” in 2019 International Conference on Information Management and Technology (ICIMTech), IEEE, Aug. 2019, pp. 295–299. doi: 10.1109/ICIMTech.2019.8843844.

I. Setyawan, I. K. Timotius, and M. Kalvin, “Automatic batik motifs classification using various combinations of SIFT features moments and k-Nearest Neighbor,” in 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE), IEEE, Oct. 2015, pp. 269–274. doi: 10.1109/ICITEED.2015.7408954.

N. W. Parwati Septiani et al., “Convolutional Neural Network (CNN) Algorithm for Geometrical Batik Sade’ Motifs,” in 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE), IEEE, Feb. 2023, pp. 597–602. doi: 10.1109/ICCoSITE57641.2023.10127829.

A. R., H. B., and K. R, “The Implementation of Backpropagation Artificial Neural Network for Recognition of Lampung Batik Motive,” J. Phys. Conf. Ser. 1338(1)., vol. 1338, no. 1, 2019, doi: https://doi.org/10.1088/1742-6596/1338/1/012062.

A. E. Minarno, M. C. Mustaqim, Y. Azhar, W. A. Kusuma, and Y. Munarko, “Deep Convolutional Generative Adversarial Network Application in Batik Pattern Generator,” in 2021 9th International Conference on Information and Communication Technology (ICoICT), IEEE, Aug. 2021, pp. 54–59. doi: 10.1109/ICoICT52021.2021.9527514.

M. Fadhilla, D. Suryani, N. Syafitri, and H. Gunawan, “Image Retrieval of Indonesian Batik Clothing Based on Convolutional Neural Network,” in 2022 3rd International Conference on Electrical Engineering and Informatics (ICon EEI), IEEE, Oct. 2022, pp. 177–180. doi: 10.1109/IConEEI55709.2022.9972332.

A. E. Minarno, I. Soesanti, and H. A. Nugroho, “A Systematic Literature Review on Batik Image Retrieval,” in 2023 IEEE 13th Symposium on Computer Applications & Industrial Electronics (ISCAIE), IEEE, May 2023, pp. 354–359. doi: 10.1109/ISCAIE57739.2023.10165121.

A. H. Rangkuti, A. Harjoko, and A. Putra, “A Novel Reliable Approach For Image Batik Classification That Invariant With Scale And Rotation Using MU2ECS-LBP Algorithm,” Procedia Comput. Sci., vol. 179, pp. 863–870, 2021, doi: 10.1016/j.procs.2021.01.075.

Farida, R. E. Caraka, T. W. Cenggoro, and B. Pardamean, “Batik Parang Rusak Detection Using Geometric Invariant Moment,” in 2018 Indonesian Association for Pattern Recognition International Conference (INAPR), IEEE, Sep. 2018, pp. 71–74. doi: 10.1109/INAPR.2018.8627000.

E. L. Rusitati, E. Suroso, W. Warsono, J. Junaidi, F. R. Lumbanraja, and P. Priyambodo, “SINERGITAS PENGGIATAN EKONOMI KERAJINAN BATIK LAMPUNG, EKSPLORASI BUDAYA DAN EDUKASI KONSERVASI: ANDANAN BATIK TULIS, NEGERI SAKTI, PESAWARAN, LAMPUNG,” Sakai Sambayan J. Pengabdi. Kpd. Masy., vol. 3, no. 2, p. 60, Jul. 2019, doi: 10.23960/jss.v3i2.146.

B. S. Negara, E. Satria, S. Sanjaya, and D. R. Dwi Santoso, “ResNet-50 for Classifying Indonesian Batik with Data Augmentation,” in 2021 International Congress of Advanced Technology and Engineering (ICOTEN), IEEE, Jul. 2021, pp. 1–4. doi: 10.1109/ICOTEN52080.2021.9493488.

D. Trimakno and Kusrini, “Impact of Augmentation on Batik Classification using Convolution Neural Network and K-Neareast Neighbor,” in 2021 4th International Conference on Information and Communications Technology (ICOIACT), IEEE, Aug. 2021, pp. 285–289. doi: 10.1109/ICOIACT53268.2021.9564000.

S. Aras, A. Setyanto, and Rismayani, “Classification of Papuan Batik Motifs Using Deep Learning and Data Augmentation,” in 2022 4th International Conference on Cybernetics and Intelligent System (ICORIS), IEEE, Oct. 2022, pp. 1–5. doi: 10.1109/ICORIS56080.2022.10031320.

R. Z. Fadillah, A. Irawan, and M. Susanty, “Data Augmentasi Untuk Mengatasi Keterbatasan Data Pada Model Penerjemah Bahasa Isyarat Indonesia (BISINDO),” J. Inform., vol. 8, no. 2, pp. 208–214, 2021.

R. R. Isnanto and A. Triwiyatno, “Classification of Traditional Batik Motifs in Central Java using Gabor Filter andBackpropagationNeural Network,” Sci. J. Informatics, vol. 11, no. 1, pp. 279–290, 2020, doi: https://doi.org/10.15294/sji.v7i2.26215.

A. A. Hakim, E. Juanara, and R. Rispandi, “Mask Detection System with Computer Vision-Based on CNN and YOLO Method Using Nvidia Jetson Nano,” J. Inf. Syst. Explor. Res., vol. 1, no. 2, Jul. 2023, doi: 10.52465/joiser.v1i2.175.

L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions,” J. Big Data, vol. 8, no. 1, p. 53, Mar. 2021, doi: 10.1186/s40537-021-00444-8.

R. D. S. Pahlawanto, H. Salsabila, and K. R. Pratiwi, “Detection and prediction of rice plant diseases using convolutional neural network (CNN) method,” J. Student Res. Explor., vol. 2, no. 1, pp. 22–33, Jan. 2024, doi: 10.52465/josre.v2i1.254.

C. Uswatun Khasanah, E. Utami, and S. Raharjo, “Implementation of Data Augmentation Using Convolutional Neural Network for Batik Classification,” in 2020 8th International Conference on Cyber and IT Service Management (CITSM), IEEE, Oct. 2020, pp. 1–5. doi: 10.1109/CITSM50537.2020.9268890.

H. Lyu, “Research on Corrosion Recognition Method of Steel Based on Convolutional Neural Network,” in 2023 IEEE 6th International Conference on Information Systems and Computer Aided Education (ICISCAE), IEEE, Sep. 2023, pp. 507–511. doi: 10.1109/ICISCAE59047.2023.10393077.

G. Kumar, P. Kumar, and D. Kumar, “Brain Tumor Detection Using Convolutional Neural Network,” in 2021 IEEE International Conference on Mobile Networks and Wireless Communications (ICMNWC), IEEE, Dec. 2021, pp. 1–6. doi: 10.1109/ICMNWC52512.2021.9688460.

M. Endah H, R. N. Wijaya, and H. Khotibul Ahsan, “Enhancing cirrhosis detection: A deep learning approach with convolutional neural networks,” J. Soft Comput. Explor., vol. 4, no. 4, pp. 196–205, Dec. 2023, doi: 10.52465/joscex.v4i4.226.

N. F. Mustamin, Y. Sari, and H. Khatimi, “KLASIFIKASI KUALITAS KAYU KELAPA MENGGUNAKAN ARSITEKTUR CNN,” KLIK - Kumpul. J. ILMU Komput., vol. 8, no. 1, p. 49, Feb. 2021, doi: 10.20527/klik.v8i1.370.

I. M. A. Agastya and A. Setyanto, “Classification of Indonesian Batik Using Deep Learning Techniques and Data Augmentation,” in 2018 3rd International Conference on Information Technology, Information System and Electrical Engineering (ICITISEE), IEEE, Nov. 2018, pp. 27–31. doi: 10.1109/ICITISEE.2018.8720990.

M. A. Rasyidi and T. Bariyah, “Batik pattern recognition using convolutional neural network,” Bull. Electr. Eng. Informatics, vol. 9, no. 4, pp. 1430–1437, Aug. 2020, doi: 10.11591/eei.v9i4.2385.

Refbacks

  • There are currently no refbacks.




Scientific Journal of Informatics (SJI)
p-ISSN 2407-7658 | e-ISSN 2460-0040
Published By Department of Computer Science Universitas Negeri Semarang
Website: https://journal.unnes.ac.id/nju/index.php/sji
Email: [email protected]

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.