K-Nearest Neighbor and Naive Bayes Classifier Algorithm in Determining The Classification of Healthy Card Indonesia Giving to The Poor

Yofi Firdan Safri(1), Riza Arifudin(2), Much Aziz Muslim(3),


(1) 
(2) Universitas Negeri Semarang
(3) Universitas Negeri Semarang

Abstract

Health is a human right and one of the elements of welfare that must be realized in the form of giving various health efforts to all the people of Indonesia. Poverty in Indonesia has become a national problem and even the government seeks efforts to alleviate poverty. For example, poor families have relatively low levels of livelihood and health. One of the new policies of the Sakti Government Card Program issued by the government includes three cards, namely Indonesia Smart Card (KIP), Healthy Indonesia Card (KIS) and Prosperous Family Card (KKS). In this study to determine the feasibility of a healthy Indonesian card (KIS) required a method of optimal accuracy. The data used in this study is KIS data which amounts to 200 data records with 15 determinants of feasibility in 2017 taken at the Social Service of Pekalongan Regency. The data were processed using the K-Nearest Neighbor algorithm and the combination of K-Nearest Neighbor-Naive Bayes Classifier algorithm. This can be seen from the accuracy of determining the feasibility of K-Nearest Neighbor algorithm of 64%, while the combination of K-Nearest Neighbor-Naive Bayes Classifier algorithm is 96%, so the combination of K-Nearest Neighbor-Naive Bayes Classifier algorithm is the optimal algorithm in determining the feasibility of healthy Indonesian card recipients with an increase of 32% accuracy. This study shows that the accuracy of the results of determining feasibility using a combination of K-Nearest Neighbor-Naive Bayes Classifier algorithms is better than the K-Nearest Neighbor algorithm.

Keywords

Determination of feasibility, Poverty, K-Nearest Neighbor, Combination of K-Nearest Neighbor-Naive Bayes Classifier algorithm

Full Text:

PDF

References

Ramdani, M. (2015). Determinan Kemiskinan Di Indonesia Tahun 1982-2012. Economics Development Analysis Journal, 4(1), 58-64.

Yuniarti, N. (2012). Eksploitasi Anak Jalanan Sebagai Pengamen dan Pengemis Di Terminal Tidar Oleh Keluarga. Komunitas, 4 (2),210 – 217.

Hadim. (2009). Dinamika Kemiskinan Rumah Tangga Di Pedesaan (Studi Kasus Desa Malasari, Kecamatan Nanggung, Kabupaten Bogor, Propinsi Jawa Barat). Skripsi. Fakultas Pertanian, Institut Pertanian Bogor. Hal.1 - 203.

Puspita, D. W. (2015). Analisis Determinan Kemiskinan di Provinsi Jawa Tengah. JEJAK: Jurnal Ekonomi dan Kebijakan, 8(1), 101-107

Nugroho, N. A. (2010). “Faktor-Faktor Penyebab Meningkatnya Rumah Tangga Miskin Di Kecamatan Suruh Kabupaten Semarangâ€. Skripsi. FE, Ekonomi Pembangunan, Universitas Negeri Semarang.

Annur, R. A. (2013). Faktor-Faktor yang Mempengaruhi Kemiskinan di Kecamatan Jekulo dan Mejobo Kabupaten Kudus Tahun 2013. Economics Development Analysis Journal, 2(4), 409 – 426.

Ilyas, A., dkk. (2014). Pertanggungjawaban Pidana Bagi Dokter Dalam Malpraktik Medik Di Rumah Sakit.

Hukum Online. (2015, 3 Maret). Presiden pun Akui Ada Masalah BPJS Kesehatan. Diperoleh 26 Januari 2017, dari http://www.hukumonline.com/berita/baca/lt54f56e21e54eb/presiden-pun-akui-ada-masalah-bpjs-kesehatan/.

Hukum Online. (2014, 14 November). Pro Kontra Tiga Kartu Sakti Ala Presiden Jokowi. Diperoleh 27 Januari 2017, dari http://www.hukumonline.com/berita/baca/lt5465ef9669c1f/pro-kontra-tiga-kartu-sakti-ala-presiden-jokowi/.

Kusrini dan Luthfi, E. T. (2009). Algoritma Data mining. Yogyakarta: Penerbit Andi.

Kaur, H. & Kaur, H. (2013). Proposed Work for Classification and Selection of Best Saving Service for Banking Using Decision tree Algorithms. International Journal of Advanced Research in Computer Science and Software Engineering, 3(9), 680-684.

Santosa, B. (2009). Data mining Teknik Pemanfaatan Data untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu.

Hermawati, F.S. (2013). Data Mining. Surabaya:Penerbit Andi.

Jain, V., Narula,G.S.,& Singh, M. (2013). Implementation of Data Mining in Online Shopping System using Tanagara Tool. International Journal of Computer Scienceand Engineering, 2(1), 47-58.

Danesh, A., Moshiri, B., & Fatemi, O. (2007, July). Improve text classification accuracy based on classifier fusion methods. In Information Fusion, 2007 10th International Conference on (pp. 1-6). IEEE.

Farid, D.M., Harbi, N. & Rahman , M.Z. (2010). Combining Naive Bayes and Decision Tree for Adaptive Intrusion Detection. International Journal of Network Security & Its Applications (IJNSA), 2(2), 12-25.

Ferdousy, E.Z., Islam, M.M. & Matin, M.A. (2013). Combination of Naive Bayes Classifier and K-Nearest Neighbor (cNK) in the Classification Based Predictive Models. Computer Science and Information Science, 6(3), 48-56.

Sierra, B., Lazkano, E., Martínez-Otzeta, J. M., & Astigarraga, A. (2004, December). Combining Bayesian networks, k nearest neighbours algorithm and attribute selection for gene expression data analysis. In Australasian Joint Conference on Artificial Intelligence (pp. 86-97). Springer, Berlin, Heidelberg.

Prasetyo, E. (2012). Data mining Konsep dan Aplikasi Menggunakan Matlab. Yogyakarta: Andi.

Skpd Batam Kota. (2014, 25 Agustus). 14 Kriteria Miskin Menurut Standar Bps. Diperoleh 27 Januari 2017, dari http://skpd.batamkota.go.id/sosial/persyaratan-perizinan/14-kriteria-miskin-menurut-standar-bps/.

Hidayah, M. R., Aklis, I. & Sugiharti, E. (2017). Recognition Number of The Vehicle Plate Using Otsu Method and K-Nearest Neighbour Classification. Scientific Journal of Informatics, 4(1), 66 – 75.

Rohmana, I., & Arifudin, R. (2014). Perbandingan Jaringan Syaraf Tiruan dan Naive Bayes dalam Deteksi Seseorang Terkena Penyakit Stroke. Jurnal MIPA, 37(2), 178-191.

Bouzalmat, A., Kharroubi, J. & Zarghili, A. (2013). Face Recognition Using SVM Based on LDA. IJCSI International Journal of Computer Science Issues, 10(1), 171 – 179.

Kumar, K. S. & Chezian, D. R. M. (2014). Support Vector Machine and K-Nearest Neighbor Based Analysis for the Prediction of Hypothyroid. International Journal of Pharma and Bio Sciences, 5(4), 447- 453.

Bharathi, D. A., & Deepankumar, E. (2014). Survey on Classification Techniques in Data Mining. International Journal on Recent and Innovation Trends in Computing and Communication, 2(7), 1983-1986.

Wati, R. (2016). Penerapan Algoritma Genetika untuk Seleksi Fitur Pada Analisis Sentimen Review Jasa Maskapai Penerbangan Menggunakan Naïve Bayes. Jurnal Evolusi. 4(1).

Baby, N & P.L.T. (2012). Customer Classification And Prediction Based On Data Mining Technique. International Journal of Emerging Technology and Advanced Engineering, 2(12), 314-18.

Pratiwi, R. W. & Nugroho, Y. S. (2016). Prediksi Rating Film Menggunakan Metode Naïve Bayes. Jurnal Teknik Elektro, 8(2), 60 – 63.

Syarifah, A. & Muslim, M. A. (2015). Pemanfaatan Naive Bayes untuk Merespon Emosi dari Kalimat Berbahasa Indonesia. Unnes Journal of Mathemathic, 4 (2),147-156.

Sugiharti, E., Firmansyah, S. & Devi, F. R. (2017). Predictive Evaluation Of Performance Of Computer Science Students Of Unnes Using Data Mining Based On Naive Bayes Classifier (Nbc) Algorithm. Journal of Theoretical and Applied Information Technology.95(4), 902 – 911.

Refbacks

  • There are currently no refbacks.




Scientific Journal of Informatics (SJI)
p-ISSN 2407-7658 | e-ISSN 2460-0040
Published By Department of Computer Science Universitas Negeri Semarang
Website: https://journal.unnes.ac.id/nju/index.php/sji
Email: [email protected]

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.