

Indo. J. Chem. Sci. 9 (1) (2020) Indonesian Journal of Chemical Science http://journal.unnes.ac.id/sju/index.php/ijcs

Sintesis dan Karakterisasi Nanopartikel Co²⁺ doped ZnO dengan Menggunakan Metode Sol-Gel

Sherly Kasuma Warda Ningsih[⊠], Bahrizal, Edi Nasra, dan Yanna Rahayu

Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Padang Jl. Prof. Hamka, Air Tawar, Padang 25131, Indonesia

Info Artikel	Abstrak
Diterima Desember 2019	Penelitian tentang sintesis dan karakterisasi Co ²⁺ <i>doped</i> ZnO telah dilakukan dengan menggunakan metode sol-gel. Zink klorida dan kobal klorida heksahidrat digunakan
Disetujui Pebruari 2020	sebagai prekursor. Metanol digunakan sebagai pelarut dan monoetanolamin (MEA)
Dipublikasikan Mei 2020	digunakan sebagai penstabil sol. Konsentrasi dopan yang digunakan yakni 3, 5 dan 7% dengan suhu kalsinasi 400°C. Sampel Co ²⁺ doped ZnO dianalisis dengan
Keywords: Co ²⁺ doped ZnO sol-gel band gap wurtzite kristalit	menggunakan FT-IR, UV-DRS dan XRD. Analisis FT-IR menunjukkan regangan pada bilangan gelombang 566 cm ⁻¹ untuk Zn-O dan Co ²⁺ <i>doped</i> ZnO menunjukkan Zn-O-Co 660 cm ⁻¹ . Nilai <i>band gap</i> diukur dengan UV-DRS untuk sampel Co ²⁺ <i>doped</i> ZnO pada suhu 400°C untuk 3, 5, 7% sebesar 2,4; 2,3 dan 2,4 eV berturut-turut. Struktur kristal Co ²⁺ <i>doped</i> ZnO yang dihasilkan adalah struktur <i>wurtzite</i> (Heksagonal) dengan rentangan ukuran kristalit berkisar antara 35-86 nm.

Abstract

Research on the synthesis and characterization of Co^{2+} doped ZnO has been carried out using the sol-gel method. Zinc chloride and cobalt chloride hexahydrate were used as precursors. Methanol was used as a solvent and monoethanolamine (MEA) was used as a stabilizer. The dopant concentrations used were 3, 5 and 7% with calcination temperatures of 400°C. Doped ZnO Co²⁺ samples were analyzed using FT-IR, UV-DRS and XRD. FT-IR analysis showed stretching at wave number 566 cm⁻¹ for Zn-O and Co²⁺ doped ZnO showing Zn-O-Co at 660 cm⁻¹. The band gap value was measured by UV-DRS for doped ZnO Co²⁺ samples at 400°C for 3, 5, 7% are 2.4, 2.3, and 2.4 eV, respectively. The resulting structure of ZnO doped Co²⁺ crystals is a *wurtzite* (Hexagonal) structure with a range of crystallite sizes ranging from 35-86 nm.

© 2020 Universitas Negeri Semarang

⊠ Alamat korespondensi: Jl. Prof. Hamka, Air Tawar, Padang 25131 E-mail: sherly14@fmipa.unp.ac.id

p-ISSN 2252-6951 e-ISSN 2502-6844

Pendahuluan

Nanomaterial merupakan material yang mempunyai ukuran dalam skala nanometer yaitu berkisar antara 1-100 nm (Shahmiri *et al.*, 2013). Material yang berukuran nano sangat banyak diminati para peneliti (Omri *et al.*, 2014), hal ini disebabkan nanopartikel memiliki sifat yang unik, seperti memiliki peningkatan konduktivitas listrik yang baik dan mampu bentuk keramik (Ningsih, 2015). ZnO merupakan salah satu suatu nanomaterial atau nanopartikel yang banyak diteliti oleh para peneliti akhir-akhir ini. Karena nanopartikel ZnO merupakan salah satu material semikonduktor logam (Sutanto & Wibowo, 2015) yang memiliki sifat mobilitas elektron lebih tinggi sekitar 60 MeV pada suhu kamar (Basthoh & Elvaswer, 2013) dan memiliki celah pita 3,37 eV energi lebar (Ma *et al.*, 2013). Sehingga ZnO memiliki berbagai aplikasi seperti dioda pemancar cahaya, gelombang permukaan filter akustik, kristal fotonik, photodetector, foto dioda, modulator pandu gelombang optik, sensor gas, dan varistor, untuk sel surya (Omri *et al.*, 2014).

Namun walaupun memiliki aplikasi yang banyak ZnO murni memiliki keterbatasan pada ukuran partikelnya yang relatif besar menjadikan nilai celah pitanya besar, sehingga dengan nilai celah pita yang besar kurang sesuai jika diaplikasikan pada cahaya tampak (Basthoh & Elvaswer, 2013; Olimpiani & Astuti, 2016). Maka perlu dilakukan modifikasi terhadap ZnO dengan cara melakukan pendopingan. Ion logam transisi biasa digunakan sebagai doping yaitu Cu²⁺, Co²⁺, dan Fe³⁺ (Ciciliati *et al.*, 2015). Ion cobalt (II) dapat digunakan sebagai dopan terhadap ZnO, karena cobalt adalah suatu dopan yang paling efektif dan memiliki pengaruh sangat kecil terhadap struktur kisi ZnO (Azam et al., 2013).

Sintesis ZnO *doped* Co^{2+} dapat dilakukan dengan metode sol-gel. Karena metoda sol-gel dapat juga dikatakan suatu metoda yang menggunakan suhu rendah untuk mensintesis material (Widodo, 2010). Bahan-bahan yang digunakan relatif mudah untuk didapatkan, memiliki kemurnian yang tinggi, dan kehomogenan produk yang berbeda (Lima *et al.*, 2014). Sehingga pada penelitian ini akan dilihat pengaruh temperatur kalsinasi pada sintesis dan karakterisasi ZnO *doped* Co^{2+} dengan metode sol-gel.

Metode

Alat-alat yang digunakan pada penelitian ini adalah *magnetic stirrer*, *stirrer bar*, *furnace*, FT-IR (*Perkin Elmer Frontier Optica*), XRD (*pANaltycal X-Pert3 Material Research Diffractometer*), SEM dan UV-DRS. Bahan-bahan yang digunakan adalah zink (II) klorida (ZnCl₂) (*Merck*) sebagai prekursor untuk zink, cobalt (II) klorida hexahidrat (CoCl₂.6H₂O) sebagai prekursor Co²⁺, metanol (CH₃OH) sebagai pelarut, dan MEA (*Monoethanolamine*, NH₂CH₂CH₂OH) sebagai zat aditif.

 $ZnCl_2$ 1,7 g (0,25 M) dilarutkan selama 30 menit dengan 50 mL metanol dalam gelas kimia 100 mL yang ditutup dengan aluminium foil yang bertujuan agar bahan yang digunakan tidak mudah menguap dan ditambahkan dopan dengan konsentrasi 3, 5, dan 7% dihomogenkan selama ± 30 menit. Selanjutnya ditambahkan 1,4 mL (± 28 tetes) MEA serta diaduk selama ± 1 jam 30 menit (Li *et al.*, 2014), sehingga diperoleh larutan homogen (sol) yang kemudian didiamkan satu malam untuk menstabilkan sol. Selanjutnya, sampel dikeringkan dalam oven pada pada suhu 100-110°C selama ± 1 jam. Gel yang diperoleh dikalsinasi dengan *furnace* pada suhu 400°C (Kayani *et al.*, 2015) selama ± 4 jam untuk memperoleh nanopartikel ZnO *doped* Co²⁺. Sampel disimpan dalam desikator, setelah dingin sampel digerus dengan lumpang dan alu sehingga sampel dapat dikarakterisasi.

Karakterisasi nanopartikel ZnO murni dan *doped* Co²⁺ menggunakan FT-IR digunakan untuk melihat gugus fungsi dari nanopartikel ZnO yang didapatkan, XRD digunakan untuk melihat stuktur serta ukuran partikel, SEM digunakan untuk analisis morfologi permukaannya dan UV-DRS digunakan untuk menentukan nilai *band gap* nya.

Hasil dan Pembahasan

Sintesis Co^{2+} *doped* ZnO dilakukan dengan metode sol-gel dengan cara mencampurkan larutan homogen zink (II) klorida (ZnCl₂) 0,25 M (1,7 g dalam 50 mL metanol) dengan kobal (II) klorida heksahidrat (CoCl₂.6H₂O) dan menambahkan zat aditif berupa MEA, yang berperan agar produk yang dihasilkan memiliki tingkat kehomogenan yang tinggi sehingga menghasilkan sol ZnCo₂(OH)₆.12H₂O. Campuran tersebut awalnya berwarna bening menjadi pink dan hasil akhir larutan menjadi ungu kehitaman. Setelah didiamkan semalam untuk menstabilkan sol yang diperoleh, dimana prosesnya dilakukan pada suhu kamar. Sebagai perbandingan dilakukan sintesis dengan memvariasikan konsentrasi dopan. Sol ZnCo₂(OH)₆.12H₂O dikeringkan dalam oven pada suhu 100-110°C selama ± 1 jam dan kemudian dilanjutkan dengan proses kalsinasi pada 400°C. Hasil kalsinasi dapat dilihat pada Gambar 1.

Gambar 1. Hasil kalsinasi nanopartikel Co²⁺ZnO

Hasil pengamatan kalsinasi nanopartikel Co²⁺ *doped* ZnO dapat dirangkum pada Tabel 1 dengan variasi konsentrasi dopan pada suhu 400°C.

 Tabel 1. Hasil pengamatan secara visual proses kalsinasi

Kadar dopan Co ²⁺ (%)	Pengamatan		
3	Sangat halus dan berwarna hijau		
5	Sangat halus dan hijau		
7	Sangat halus dan hijau		

Hasil analisis nanopartikel Co²⁺ *doped* ZnO dengan FT-IR ditunjukkan pada Tabel 2. Pengukuran dengan FT-IR ini bertujuan untuk menganalisis gugus fungsi yang terdapat pada sampel uji. Puncak serapan pada daerah bilangan gelombang 1000-400 cm⁻¹ lebih penting, karena pada daerah tersebut ikatan dari logam oksida yang diinginkan akan muncul seperti ikatan dari puncak Zn-O (Pazhanivelu *et al.*, 2016). Berdasarkan hasil analisis FT-IR dapat dilihat bahwa disini lebih difokuskannya kemunculan daerah sidik jari dari puncak Zn-O murni dan Zn-O-Co. Nilai dari spektrum yang muncul dapat dilihat pada Tabel 2.

Gambar 2. Kurva band gap nanopartikel ZnO doping 3% Co²⁺

Gambar 3. Kurva band gap nanopartikel ZnO doping 5% Co²⁺

Gambar 4. Kurva band gap nanopartikel ZnO doping 7% Co²⁺

Kurva Nilai *band gap* yang diperoleh dari nanopartikel ZnO *doped* Co^{2+} dengan berbagai konsentrasi dapat dilihat pada Gambar 2, 3 dan 4. Nilai *band gap* dapat dihitung dengan dengan mengubah besaran %R ke dalam faktor *Kubelka-Munk* (F(R)) dan dengan demikian energi *band gap* diperoleh dengan menghubungkan grafik antara *hv* (eV) vs (F(R' ∞)*hv*)1/2 (Umar *et al.*, 2015).

Tabel 3 tersebut dapat dilihat bahwa dengan pengaruh komposisi terhadap nilai *band gap* dari nanopartikel ZnO-Co tidak terlalu mempengaruhi, hal ini dapat dilihat dari besarnya *band gap* nanopartikel yang dihasilkan dengan pengaruh komposisi tidak menunjukkan perbedaan nilai yang diperoleh kecuali untuk kompoisi 5%, namun nilai *band gap* ini menunjukkan bahwa jika didoping dengan logam Co, maka nilai *band gap*nya semakin kecil dibandingkan tanpa doping. Hasil ini sesuai, dimana nilai *band gap* dari suatu nanopartikel ZnO yang didoping dengan logam lebih kecil dibandingkan tanpa doping (YIlmaz *et al.*, 2014). Sedangkan terhadap % dopannya yaitu Co terlihat bahwa dengan semakin besar %dopan maka dapat menurunkan nilai *band gap*nya. Sehingga pertambahan dopan maka nilai *band gap* suatu ZnO-Co²⁺ semakin kecil (El Ghoul *et al.*, 2015).

0.11	nai <i>bunu gup</i> nanopartikei	Co uoptu Liio pada su
	Kadar dopan Co ²⁺ (%)	Nilai band gap (eV)
	3	2,4
	5	2,3
-	7	2,4

Tabel 3. Nilai *band gap* nanopartikel Co²⁺ *doped* ZnO pada suhu 400°C

Gambar 5. Pola difraksi sinar-X dari nanopartikel ZnO doping 3% Co²⁺ pada suhu 400°C

Gambar 6. Pola difraksi sinar-X dari nanopartikel ZnO doping 5% Co2+ pada suhu 400°C

Gambar 7. Pola difraksi sinar-X dari nanopartikel ZnO doping 7% Co2+ pada suhu 400°C

Gambar 5, 6 dan 7 menunjukkan pola difraksi sinar-X dari nanopartikel Co²⁺ doped ZnO secara keseluruhan puncak-puncak dengan intensitas yang tinggi pada 20 yang merupakan puncak karakteristik dari Co²⁺ doped ZnO pada difraktogram memiliki puncak yang runcing dan tajam. Difragtogram ZnO ini dicocokan dengan data ICSD-ICDD (*Inorganic Structure Database-International Center for Diffraction Data*). Hal ini telah ditegaskan oleh (Hammad *et al.*, 2013; Singh *et al.*, 2016) bahwa dalam penelitiannya sintesis ZnO yang didoping dengan logam kobal akan menghasilkan puncak dengan intensitas seperti Gambar 5, 6 dan 7. Puncak yang berada pada pada orientasi kristal dengan intensitas tinggi yang berhubungan dengan bidang (100), (002), (101), sedangkan intensitas yang rendah pada (102), (110), (103), dan (112).

Berdasarkan puncak yang dihasilkan dapat ditentukan ukuran partikel Co²⁺ *doped* ZnO yang dapat ditentukan dari nilai FWHM (*Full Width at Half Maximum*) diketahui melalui persamaan *Scherrer* yaitu:

D adalah ukuran krisatal, λ =0,154 nm merupakan panjang gelombang sinar-X, β =nilai FWMH merupakan setengah lebar dari puncak tertinggi, θ merupakan sudut difraksi dan 0,89 adalah konstanta. Analisis spektra XRD dilihat pada Tabel 4.

Tuber 4. Amanisis duta AND hanopartiker Zho doping Co 570 sund 400 C						
Temperatur	Dos [07Th]	Height [ctc]	FWHMLeft	d-spacing	Rel. Int.	Ukuran
kalsinasi	F05.[21n.]	Height [Cts]	[°2Th.]	[Å]	[%]	kristal (nm)
	31,7042	8631,86	0,1535	2,82234	60,41	53,18
400°C	34,3629	7871,08	0,1535	2,60982	55,08	53,55
	36,1808	14289,39	0,1791	2,48275	100,00	46,13
	56,5126	3881,56	0,1248	1,62710	27,16	71,44
	62,7845	3704,42	0,1248	1,47880	25,92	73,71

Tabel 4. Analisis data XRD nanopartikel ZnO doping Co²⁺ 3% suhu 400°C

Tabel 4 menunjukkan bahwa nanopartikel ZnO doping Co²⁺ dengan konsentrasi 3% pada temperatur 400°C memperlihatkan bahwa ukuran partikel berkisar antara 46,13-73,71 nm, ukuran partikel seragam sebesar 53 nm.

Tabel 5. Analisis data XRD Nanopartikel ZnO doping Co ²⁺ 5% suhu 400°C						
Temperatur	Dog [07Th]	Height [ctc]	FWHMLeft	d-spacing	Rel. Int.	Ukuran
kalsinasi	103.[21 <i>n</i> .]	meigni [cis]	[°2Th.]	[Å]	[%]	kristal (nm)
	31,7018	6291,36	0,1791	2,82255	57,68	45,58
400°C	34,3788	5595,42	0,1535	2,60865	51,30	53,55
	36,1820	10907,71	0,2047	2,48267	100,00	40,36
	56,5059	3159,24	0,1560	1,62728	28,96	57,15
	62,7989	3007,05	0,1248	1,47850	27,57	73,72

Tabel 5 memiliki ukuran partikel ZnO doping Co^{2+} 5% pada suhu 400 °C berkisar sebesar 40,36-73,72 nm. Ukuran partikel terendah berada pada puncak 36,1820 dan ukuran partikel tertinngi berada di puncak 62,7989.

Tabel 6. Analisis data XRD Nanopartikel ZnO doping Co²⁺ 7% suhu 400°C

Tuber of Timanolo data Titub Tranopartiner Ene doping co Tratada too e						
Temperatur	Doc [07Th]	Usight [sta]	FWHMLeft	d-spacing	Rel. Int.	Ukuran
kalsinasi	F0S.[21N.]	Height [Cis]	[°2Th.]	[Å]	[%]	kristal (nm)
	31,7092	6119,08	0,1791	2,82191	57,71	45,58
400°C	34,3866	5278,00	0,1535	2,60808	49,78	53,55
	36,1859	10602,95	0,1791	2,48241	100,00	46,13
	56,4965	2940,42	0,1560	1,62753	27,73	57,15
	62,8097	3018,86	0,1248	1,47827	28,47	73,72

Tabel 6 menunjukkan bahwa nanopartikel ZnO doping Co^{2+} dengan konsentrasi 7% pada temperatur 400°C memperlihatkan bahwa ukuran partikel berkisar antara 45,58-73,72 nm. Terlihat bahwa ukuran nanopartikel terkecil sebesar 45,58 nm sedangkan ukuran partikel terbesar berkisar 73,72 nm. Selain ukuran partikel yang diperoleh kita juga dapat menentukan struktur kristal yang terbentuk dengan menggunakan pengujian XRD ini. Dimana dari hasil pengukuran tersebut struktur kristal yang terbentuk sesuai dengan yang diharapkan yaitu struktur hexagonal *wurzite*, bahwa suatu ZnO yang telah didoping dengan logam Co^{2+} tidak merubah struktur heksagonal *wurzite* dari ZnO (Azam *et al.*, 2013), karena struktur inilah struktur yang paling stabil jika disintesis pada suhu kamar.

Simpulan

Nanopartikel ZnO doping Co^{2+} dapat disintesis dengan metode sol-gel menggunakan bahan dasar ZnCl₂ dan CoCl₂.6H₂O, metanol sebagai pelarut, dan MEA sebagai zat aditif. Analisa spektra FT-IR didapatkan ikatan Zn-O dan Zn-O-Co pada bilangan gelombang 400-800 cm⁻¹. Nilai celah pita (*band gap* energi) dari nanopartikel ZnO doped Co²⁺ terhadap temperatur kalsinasi tidak terlalu mempengaruhi karena nilai yang dihasilkan hanya berkisar 2,3 dan 2,4 eV, namun dengan dilakukan pendopingan nilai celah pitanya dapat menurunkan nilai celah pita ZnO. Hasil analisa XRD dipeoleh puncak spesifik ZnO doping Co²⁺ yang ditunjukkan pada arah bidangnya, dan ukuran partikelnya semakin besar dengan pengaruh kenaikan suhu serta %dopannya yaitu berkisar antara 40,36-64,27 nm serta memiliki struktur heksagonal *wurzite*.

Daftar Pustaka

Azam, A., Ahmed, F., Habib, S.S., Khan, Z.H., & Salah, N.A. 2013. Fabrication of Co-doped ZnO nanorods for spintronic devices. *Metals and Materials International*, 19 (4): 845–850

Basthoh & Elvaswer, H. 2013. Karakterisasi ZnO Didoping TiO₂ untuk Detektor LPG. Jurnal Ilmu Fisika | Universitas Andalas, 5 (1): 11–15

- Ciciliati, M.A., Silva, M.F., Fernandes, D.M., De Melo, M.A.C., Hechenleitner, A.A.W., & Pineda, E.A.G. 201). Fe-doped ZnO Nanoparticles: Synthesis by a Modified Sol-Gel Method and Characterization. *Materials Letters*, 159: 84–86
- El Ghoul, J., Kraini, M., & El Mir, L. 2015. Synthesis of Co-doped ZnO Nanoparticles by Sol–Gel Method and Its Characterization. *Journal of Materials Science: Materials in Electronics*, 26 (4): 2555– 2562
- Hammad, T. M., Salem, J. K., & Harrison, R. G. (2013). Structure, optical properties and synthesis of Codoped ZnO superstructures. *Applied Nanoscience (Switzerland)*, 3(2), 133–139. https://doi.org/10.1007/s13204-012-0077-9
- Kayani, Z.N., Saleemi, F., & Batool, I. 2015. Effect of Calcination Temperature on the Properties of ZnO Nanoparticles. *Applied Physics A: Materials Science and Processing*, 119 (2): 713–720
- Li, B., Adjei, R., Chen, Z., Shen, H., & Luo, J. 2014. Synthesis and Characterization of Highly Preferred Orientation Polycrystalline Co-doped ZnO Thin Films Prepared by Improved Sol-Gel Method. *Journal of Sol-Gel Science and Technology*, 70 (1): 19–23
- Lima, M.K., Fernandes, D.M., Silva, M.F., Baesso, M.L., Neto, A.M., de Morais, G. R., ... Pineda, E.A.G. 2014. Co-doped ZnO Nanoparticles Synthesized by an Adapted Sol–Gel Method: Effects on the Structural, Optical, Photocatalytic and Antibacterial Properties. *Journal of Sol-Gel Science and Technology*, 72 (2): 301–309
- Ma, H., Cheng, X., Ma, C., Dong, X., Zhang, X., Xue, M., ... Fu, Y. 2013. Synthesis, Characterization, and Photocatalytic Activity of N-Doped ZnO/ZnS Composites. *International Journal of Photoenergy*
- Ningsih, S.K.W. 2015. Synthesis and Characterization of NiO Nanopowder by Sol-Gel Process. *AIP* Conference Proceedings, 1677
- Olimpiani, I., & Astuti. 2016. Nanopartikel ZnO. Jurnal Fisika Unand, 5 (2): 115-121
- Omri, K., Najeh, I., Dhahri, R., El Ghoul, J., & El Mir, L. 2014. Effects of Temperature on the Optical and Electrical Properties of ZnO Nanoparticles Synthesized by Sol-Gel Method. *Microelectronic Engineering*, 128: 53–58
- Pazhanivelu, V., Paul Blessington Selvadurai, A., Kannan, R., & Murugaraj, R. 2016. Room Temperature Ferromagnetism in Ist Group Elements Codoped ZnO:Fe Nanoparticles by Co-Precipitation Method. *Physica B: Condensed Matter*, 487: 102–108
- Shahmiri, M., Ibrahim, N.A., Zainuddin, N., Asim, N., Bakhtyar, B., Zaharim, A., & Sopian, K. 2013. Effect of pH on the Synthesis of Cuo Nanosheets by Quick Precipitation Method. WSEAS Transactions on Environment and Development, 9 (2): 137–145
- Singh, J., Chanda, A., Gupta, S., Shukla, P., & Chandra, V. 2016. Effect of Cobalt Doping on Structural and Optical Properties of ZnO Nanoparticles. *AIP Conference Proceedings*, 1731 (1): 47–51
- Sutanto, H., & Wibowo, S. 2015. Semikonduktor Fotokatalis ZnO dan Titania: Sintesis, Deposisi dan Aplikasi. In *eprints.undip.ac.id*
- Umar, A., Kumar, R., Kumar, G., Algarni, H., & Kim, S.H. 2015. Effect of Annealing Temperature on the Properties and Photocatalytic Efficiencies of ZnO Nanoparticles. *Journal of Alloys and Compounds*, 648: 46–52
- Widodo, S. 2010. Teknologi Sol Gel pada Pembuatan Nano Kristalin Metal Oksida untuk Aplikasi Sensor Gas. Seminar Rekayasa Kimi dan Proses, E-20-1 – E-20-8
- YIImaz, S., Polat, I., Atasoy, Y., & BacaksIz, E. 2014. Structural, Morphological, Optical and Electrical Evolution of Spray Deposited ZnO Rods Co-Doped with Indium and Sulphur Atoms. *Journal of Materials Science: Materials in Electronics*, 25 (4): 1810–1816.