

Indo. J. Chem. Sci. 10 (1) (2021)

Indonesian Journal of Chemical Science

http://journal.unnes.ac.id/sju/index.php/ijcs

Synthesis and Characterization of ZnO Nanoparticles Using Sol-Gel Method

Sherly Kasuma Warda Ningsih[⊠], Miftahul Khair, dan Silvi Veronita

Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Padang, Jl. Prof. Hamka, Air Tawar, Padang 25131, Indonesia

Info Artikel	Abstrak

Diterima Maret 2021 Disetujui April 2021

Dipublikasikan Mei 2021

Keywords: ZnO nanoparticles Sol-gel method Precursor variation Wurtzite crystal

Nanopartikel ZnO memiliki banyak aplikasi dalam fotokatalisis. Teknik sol-gel adalah salah satu metode sintesis ZnO berskala nano dengan harga rendah dan mudah dilakukan. Tujuan penelitian ini adalah mengetahui pengaruh prekursor terhadap karakteristik nanopartikel ZnO yang diperoleh menggunakan metode solgel antara lain diteliti kemurnian serbuk nano ZnO, struktur/ukuran kristal serta morfologinya. Serbuk nano ZnO dibuat dengan menggunakan zinc acetate dihydrate, zinc chloride dan zinc sulfate heptahydrate sebagai berbagai prekursor dan kalsinasi dilakukan dalam suhu 400 dan 600°C. Serbuk ZnO dikarakterisasi dengan Energy Dispersive X-Ray Fluorescence (ED-XRF), X-ray diffraction (XRD) dan Scanning Electron Microscopy (SEM). Data ED-XRF menunjukkan bahwa kemurnian tertinggi ZnO yakni 97,2% menggunakan prekursor zinc acetate dehydrate. Prekursor sangat mempengaruhi struktur dan ukuran kristal nanopowders ZnO. Dalam penelitian ini, pola XRD ZnO menunjukkan struktur heksagonal (wurtzite) dengan ukuran kristal nanopowders ZnO adalah 37-84 nm. Variasi suhu mempengaruhi struktur dan morfologi serbuk ZnO. Mikrograf SEM dari nanopowders ZnO merupakan aglomerasi kecil berbentuk bola dan seperti ranting.

Abstract

ZnO nanoparticles have many applications in photocatalysis. The sol-gel technique is one of the lowest-cost and easy-to-perform methods for synthesizing ZnO nanoscale. The purpose of this study was to determine the effect of precursors on the characteristics of the ZnO nanoparticles obtained by using the sol-gel method, including examining the purity of ZnO nanopowder, crystal structure/size, and morphology. ZnO nanopowder was prepared using zinc acetate dihydrate, zinc chloride, and zinc sulfate heptahydrate as various precursors, and calcination was carried out at temperatures of 400 and 600°C. ZnO nano powder was characterized by Energy Dispersive X-Ray Fluorescence (ED-XRF), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM). ED-XRF data shows that the highest purity of ZnO is 97.2% using zinc acetate dehydrate precursor. The precursors greatly influence the crystal structure and size of the ZnO nanopowders. In this study, the XRD ZnO pattern shows the hexagonal structure (wurtzite) with the crystal size of the ZnO nanopowders is 37-84 nm. Temperature variations affect the structure and morphology of ZnO powder. SEM micrographs of ZnO nanopowders are small spherical and twig-like agglomerations.

© 2021 Universitas Negeri Semarang

⊠Alamat korespondensi: Jl. Prof. Hamka, Air Tawar, Padang 25131 E-mail: sherly14@fmipa.unp.ac.id p-ISSN 2252-6951 e-ISSN 2502-6844

Pendahuluan

Serbuk nano semikonduktor sangat banyak diteliti dalam beberapa tahun terakhir karena sifat listrik, mekanik, dan optik baru. ZnO memiliki banyak aplikasi dalam fotokatalisis untuk mengoksidasi polutan organik dengan konsentrasi rendah dalam air (Fragalà *et al.*, 2017). ZnO memiliki celah pita lebar 3,37 eV (Yuan *et al.*, 2020). ZnO dapat digunakan sebagai sensor gas (Shetti, *et al.*, 2019), (Rafiee, *et al.*, 2021), (Zhang *et al.*, 2021), sensor etanol (Li *et al.*, 2021), generator (Qin *et al.*, 2016), ultraviolet photodetectors (Yuan *et al.*, 2020), dalam sistem biomedis (Alves *et al.*, 2019), LED (Skriniarova *et al.*, 2019), sel surya (Mahmood, *et al.*, 2018).

Banyak metode yang telah dilaporkan untuk mensintesis ZnO seperti metode sonokimia (Yu *et al.*, 2014), (Gupta & Srivastava, 2018), proses solid state (Gharagozlou, *et al.*, 2015), metode hidrotermal (Agarwal, *et al.*, 2018), (Petrović *et al.*, 2016), (AlZoubi, *et al.*, 2018), Chemical Vapor Deposition (CVD) (Kumar, *et al.*, 2018), coprecipitation process (Puneetha, 2020), metode solvothermal (Moulahi & Sediri, 2016), dan metode sol-gel (Agarwal *et al.*, 2018), (Ba-Abbad, *et al.*, 2013), (Bu, 2015), dan (Petersen *et al.*, 2009). Teknik sol-gel adalah salah satu proses harga terendah dan juga metode populer untuk membuat oksida logam transisi murni.

Di sini, kami melaporkan *nanopowders* ZnO dibuat dengan teknik sol-gel. Metode ini tidak melibatkan peralatan khusus jika dibandingkan dengan metode lain seperti hidrotermal dan solvotermal, menghasilkan produk dengan kemurnian tinggi dan hasil tinggi serta luas permukaan spesifik yang tinggi dan konsumsi energi yang rendah. Berbagai prekursor yang digunakan adalah zink aseatat dihidrat [Zn(COOCH₃)₂.2H₂O], zink klorida [ZnCl₂)] dan zink sulfat heptahidrat [ZnSO₄.7H₂O]. Metanol dan isopropanol digunakan sebagai pelarut, larutan NaOH sebagai pengatur pH dan etilen glikol digunakan sebagai aditif.

Metode

Alat dan Bahan

Pengukuran XRD dilakukan dengan X'Pert Pro MRD dari PAnalytical dengan radiasi CuK α (λ = 0.15406 nm) untuk mengkarakterisasi struktur kristal produk ZnO. Analisis komposisi dilakukan dengan PANalytical Tipe Epsilon 3 ED-XRF. Spektrum FTIR 4000-600 cm⁻¹ direkam pada Perkin Elmer Spectrum IR. Morfologi permukaan produk dikarakterisasi menggunakan SEM.Alat-alat yang digunakan pada penelitian ini adalah cawan porcelen, pipet tetes, lumpang dan alu, spatula, *magnetic stirer, stirer bar*, peralatan gelas, desikator, neraca analitik, oven, *furnace*, FTIR (PerkliElmr Frontier Optica), XRD (pANaltycal X-Pert3 Material Research Diffractometer), SEM dan UV-DRS.

Senyawa Zn(COOCH₃)₂.2H₂O (Merck), (ZnCl₂) (Merck) dan (ZnSO₄.7H₂O) (Merck) digunakan sebagai prekursor. Metanol dan isopropanol (p.a.) digunakan sebagai pelarut, etilen glikol digunakan sebagai aditif dan larutan NaOH digunakan sebagai pengatur pH.

Prosedur Sintesis ZnO dengan menggunakan berbagai Prekursor

Nanopowders ZnO disintesis dengan melarutkan 0,5 M Zn (COOCH₃)₂.2H₂O dalam jumlah yang sesuai dengan metanol. Larutan berair [Zn(COOCH₃)₂.2H₂O diaduk pada suhu kamar selama 60 menit dan larutan NaOH ditambahkan tetes demi tetes sampai pH larutan 8 dan dilanjutkan diaduk selama 3 jam. Untuk 0,5 M ZnCl₂ dilarutkan dalam jumlah pelarut yang sesuai. Untuk prekursor ZnCl₂, 0,5 M ZnCl₂ dilarutkan dalam pelarut metanol dan diaduk selama 60 menit dan larutan NaOH ditambahkan tetes demi tetes sampai pH 12 dan dilanjutkan pengadukan selama 3 jam. Larutan 0,5 M seng sulfat heptahidrat [ZnSO₄.7H₂O] dilarutkan dalam metanol. Larutan ZnSO₄.7H₂O diaduk dengan *magnetic stirrer* selama 1 jam dan larutan NaOH ditambahkan tetes demi tetes selama 3 jam sampai pH 9. Etilen glikol ditambahkan tetes demi tetes untuk aditif larutan. Endapan putih tersebut dibentuk dan dicuci dengan menggunakan akuades. Sampel dikeringkan dalam oven pada suhu 85°C selama 1 jam. Gel dikalsinasi pada suhu 500 °C selama 1 jam (Agarwal *et al.*, 2018) dengan modifikasi.

Prosedur Sintesis ZnO dengan menggunakan berbagai temperatur

Zink asetat dihidrat sebanyak 3,2922 gram (0,5 M) dilarutkan dalam 30 mL isopropanol sambil diaduk dengan *magnetic stirrer* selama ± 60 menit. Setelah itu ditambahkan etilen glikol. Penambahan NaOH 2M dilanjutkan sampai pH larutan sekitar 8. Larutan masih diaduk dengan *magnetic stirrer* selama ± 180 menit. Setelah itu disaring, endapan yang terbentuk disaring dan dicuci dengan akuades sebanyak 2 kali. Endapan yang telah dicuci ini dikeringkan dalam oven pada suhu $\pm 100-110$ °C selama ± 1 jam.

Serbuk yang telah terbentuk dilanjutkan dengan kalsinasi menggunakan tungku pada suhu 400 °C dan 600 °C selama 1 jam (Agarwal *et al.*, 2018) dengan berbagai modifikasi.

Hasil dan Pembahasan

ZnO *nanopowder* dibuat dengan menggunakan berbagai prekursor yakni zink asetat dihidrat, zink klorida dan zink sulfat heptahidrat, dan metanol sebagai pelarut. Larutan natrium hidroksida dan etilen glikol ditambahkan ke sol sebagai pengatur pH dan aditif. Zink asetat dehidrat sulit larut dalam pelarut metanol, larutan diaduk dengan menggunakan hotplate magnetic stirrer pada suhu kamar selama 3 jam menghasilkan larutan berwarna putih dan dilanjutkan dengan penambahan larutan NaOH tetes demi tetes hingga nilai pH 8. Larutan Zn(OH)₂ dikeringkan pada suhu 85 °C selama 1 jam dan dilanjutkan dengan kalsinasi pada suhu 400 dan 600 °C selama 1 jam untuk menghasilkan ZnO *nanopowder*. Warna bubuk nano ZnO berwarna putih(Ba-Abbad *et al.*, 2013). Reaksinya adalah sebagai berikut:

$Zn(CH_3COO)_2.2H_2O_{(aq)} + 2NaOH_{(aq)} \rightarrow Zn(OH)_2.2H_2O_{(aq)} + 2CH_3COONa_{(aq)}$	(1)
$Zn(OH)_2.2H_2O \rightarrow Zn(OH)_2 + 2H_2O$	(2)
$Zn(OH)_2 \rightarrow ZnO + H_2O$	(3)

Hasil Analisis ED-XRF

Tabel 1 menunjukkan kurva data ED-XRF *nanopowder* ZnO yang disintesis dengan menggunakan zink asetat dihidrat sebagai prekursor. Dari kurva tersebut terlihat bahwa komposisi ZnO adalah 97,216%. Senyawa lainnya adalah Al₂O₃ 0,64%, SiO₂ (0,48%), P₂O₅ (0,86%), CaO (0,1%) dan Fe₂O₃ (0,029%). Kemurnian ZnO yang disintesis menggunakan prekursor zink asetat dihidrat sangat tinggi.

Tabel 1. Data XRF ZnO dibuat dengan menggunakan zink asetat dihidrat

Tabel 1. Data ART Zilo dibuat dengan menggunakan zink asetat dimutat								
Compound	Conc	Unit	Compound	Conc	Unit	Compound	Conc	Unit
Al	0,408	%	Al_2O_3	0,762	%	Al_2O_3	0,644	%
Si	0,274	%	SiO_2	0,58	%	SiO ₂	0,489	%
Р	0,45	%	P_2O_5	1,02	%	P_2O_5	0,859	%
C1	0,347	%	C1	0,343	%	CaO	0,102	%
Ca	0,089	%	CaO	0,123	%	Fe_2O_3	0,029	%
Fe	0,025	%	Fe_2O_3	0,035	%	Co_3O_4	0,006	%
Co	0,005	%	Co	0,005	%	NiO	0	%
Ni	0	%	Ni	0	%	ZnO	97,216	%
Zn	98,011	%	Zn	96,744	%	Ag ₂ O	0	%
Ag	0	%	Ag	0	%	CdO	0,169	%
Cd	0,18	%	Cd	0,178	%	Yb ₂ O ₃	0,077	%
Yb	0,085	%	Hf	0,127	%	HfO_2	0,122	%
Hf	0,128	%	Yb	0,084	%	C1	0,287	%

Tabel 2 menggambarkan data ED-XRF serbuk ZnO yang dibuat menggunakan prekursor zink klorida. Komposisi ZnO dapat dilihat pada Tabel 2 sekitar 71,8%. Senyawa lain dalam sampel ini adalah Al_2O_3 (1,36%), P_2O_5 (0,88%), SiO_2 (1,16%), dan NaCl (24,2%). Pengotor sampel ini disebabkan oleh prekursor ion klorida yang sangat asam. Gel ZnO dicuci sebelum proses kalsinasi dengan menggunakan air dan etanol. Kemurnian ZnO hasil sintesis dengan prekursor seng klorida adalah 71,808%. Pengotor sampel ini adalah natrium klorida (NaCl) sekitar 24,2%.

Tabel 2. Data XRF ZnO disintesis menggunakan zink klorida

	Table 2. Data AKI Zilo disintesis menggunakan zink kionda								
Unsur	Conc	Unit	Compound	Conc	Unit	Compound	Conc	Unit	
Al	0,829	%	Al_2O_3	1,541	%	Al_2O_3	1,363	%	
Si	0,629	%	SiO ₂	1,323	%	SiO_2	1,169	%	
Р	0,445	%	P_2O_5	1,002	%	P_2O_5	0,883	%	
C1	28,151	%	C1	27,641	%	K ₂ O	0,058	%	
K	0,057	%	K_2O	0,067	%	CaO	0,162	%	
Ca	0,137	%	CaO	0,187	%	Fe_2O_3	0,028	%	
Fe	0,023	%	Fe_2O_3	0,033	%	Co_3O_4	0,007	%	
Co	0,006	%	Co	0,006	%	ZnO	71,808	%	
Zn	69,403	%	Zn	67,886	%	SeO_2	0,009	%	
Se	0,007	%	Se	0,007	%	PdO	0	%	
Pd	0	%	Ag	0,205	%	Ag ₂ O	0,192	%	
Ag	0,209	%	Cd	0	%	CdO	0	%	
Cđ	0	%	In	0	%	In_2O_3	0	%	

In	0	%	Hf	0,101	%	HfO ₂	0,102	%
Hf	0,103	%	Pd	0	%	Cl	24,219	%

Tabel 3 menggambarkan data ED-XRF serbuk ZnO yang dibuat dengan menggunakan prekursor zink sulfat heptahidrat. Komposisi ZnO sekitar 43,1%. Senyawa lain dalam sampel ini adalah Al_2O_3 (2,7%), P_2O_5 (0,6%), SiO_2 (2,8%), dan SO_3 (50%). Pengotor sampel ini disebabkan oleh prekursor ion sulfat yang sangat asam. Gel ZnO dicuci sebelum proses kalsinasi dengan menggunakan air dan etanol. Kemurnian ZnO hasil sintesis dengan prekursor seng klorida adalah 43,147%. Sampel ZnO mengandung pengotor yang sangat tinggi. Pengotor sampel yang disebabkan oleh sampel tidak cukup dicuci dengan etanol untuk menghilangkan pengotor.

Tabel 3. Data XRF ZnO dibuat dengan menggunakan zink sulfat heptahidrat

Compound	Conc	Unit	Compound	Conc	Unit	Compound	Conc	Unit
Al	2,182	%	Al_2O_3	2,905	%	Al_2O_3	2,704	%
Si	2,049	%	SiO ₂	3,059	%	SiO ₂	2,841	%
Р	0,414	%	P_2O_5	0,655	%	P_2O_5	0,607	%
S	32,127	%	SO3	54,303	%	SO_3	50,077	%
K	0,064	%	K_2O	0,05	%	K ₂ O	0,046	%
Ca	0,116	%	CaO	0,106	%	CaO	0,097	%
Fe	0,024	%	Fe_2O_3	0,022	%	Fe_2O_3	0,02	%
Co	0,005	%	Co	0,003	%	Co_3O_4	0,004	%
Ni	0	%	Ni	0	%	NiO	0	%
Zn	62,312	%	Zn	38,439	%	ZnO	43,147	%
Ag	0,537	%	Ag	0,352	%	Ag ₂ O	0,346	%
In	0	%	In	0	%	In_2O_3	0	%
Yb	0,073	%	$_{ m Hf}$	0,059	%	Yb_2O_3	0,046	%
Hf	0,094	%	Bi	0,002	%	HfO_2	0,064	%
Bi	0,003	%	Yb	0,045	%	Bi_2O_3	0,002	%

Hasil Analisis XRD

Pola XRD ZnO yang disintesis dengan zink asetat dihidrat, zink klorida dan zink sulfat heptahidrat dapat dilihat pada Gambar 1. Gambar 1a menunjukkan pola XRD dari ZnO nanopowder yang dibuat dengan menggunakan prekursor zink sulfat heptahidrat. Pola XRD nanopowder ZnO menunjukkan 7 puncak pada $2\theta = 31,71; 34,36; 36,19; 47,50; 56,54; 67,89$ dan 69,06. Puncak sampel dikonfirmasi sebagai ZnO heksagonal (wurtzite) (Bu, 2015)dengan berbagai bidang difraksi [100], [002], [101], [102], [110], [112] dan [201], masing-masing. Puncak lain terdeteksi pada 20 dari 14,31; 19,43; 23,40 dan 27,02 yang menegaskan natrium zink sulfat hidrat (Kartu PDF No. 01-074-7117). Ukuran kristal dapat ditentukan dengan menggunakan persamaan Scherrer (Moulahi & Sediri, 2016). Ukuran kristal nanopowder ZnO yang dibuat dengan menggunakan prekursor heptahidrat seng sulfat adalah 37-58 nm untuk berbagai puncak difraksi yang teridentifikasi (Tabel 4). Gambar 1b menunjukkan spektrum XRD serbuk putih ZnO nanopowder yang dibuat dengan menggunakan prekursor zink klorida. Data ini dengan jelas menggambarkan pada $2\theta = 31,69$; 34,39; 36,22; 47,51; 62,83; 67,91 dan 69,06 dengan berbagai bidang difraksi [100], [002], [101], [102], [110], [200], [112], masing-masing. Pola XRD menunjukkan pembentukan fase heksagonal ZnO (Kartu JCPDS 01-073-8765, Puncak lain diamati pada 20 dari 27.34; 45,40 dan 56,74 yang menunjukkan natrium klorida (kartu Pdf No. 01-070-2509). ukuran nanopowder ZnO telah ditemukan bervariasi antara 45 dan 84 nm untuk berbagai puncak difraksi diidentifikasi (Tabel 5). Gambar 1c merupakan pola XRD untuk ZnO yang disintesis menggunakan zink sulfat heptahidrat. Puncak 20 adalah 31,80; 34,46; 36,28; 47,54; 56,60; 62,86; 66,34; 67,95 dan 69,09. Puncak sampel dikonfirmasi sebagai ZnO heksagonal (wurtzite) (Petersen et al., 2009) dengan berbagai bidang difraksi [100], [002], [101], [102], [110], [103], [200], [112] dan [201], masing-masing. Puncak nanopowder ZnO yang terbentuk sangat khas, yang menandakan kristalinitas ZnO yang tinggi. Semua pantulan dalam pola ini dapat diindeks menjadi fase heksagonal ZnO (Kartu PDF No. 01-074-9939). Ukuran kristal sampel berada pada kisaran 40-76 nm (Tabel 6).

Gambar 1. Pola XRD ZnO *nanopowder* yang dipreparasi menggunakan a) zink sulfat heptahidrat, b) zink klorida dan c) zink asetat dihidrat

Tabel 4. Data FWHM nanopartikel ZnO yang disintesis menggunakan zink sulfat heptahidrat									
Angle (20)	Height (counts)	FWHM	d-value(<u>[Å]</u>	Relative intensity	Crystallite size				
				(counts) (%)	(nm)				
31,71	1513,05	0,1791	2,8215	72,70	45,6				
34,36	973,82	0,1535	2,6102	46,79	53,6				
36,19	2081,23	0,2047	2,4824	100,00	40,4				
47,50	500,31	0,2047	1,9143	24,04	42,0				
56,54	606,07	0,1535	1,6277	29,12	58,2				
67,89	360,60	0,1791	1,37806	17,33	52,9				
69,06	206,31	0,2558	1,3600	9,91	37,.3				

 Tabel 5. Data FWHM nanopartikel ZnO yang disintesis menggunakan zink klorida									
 Angle (20)	Height (counts)	FWHM	d-value(<u>[Å]</u>	Relative intensity	Crystallite size				
 -				(counts) (%)	(nm)				
31,69	8579,66	0,1791	2,8234	100,00	45,6				
34,39	3222,50	0,1535	2,6074	37,56	53,6				
36,22	7167,44	0,1791	2,4799	83,54	46,2				
47,51	1635,28	0,1023	1,9137	19,06	84,2				
62,83	2061,15	0,1248	1,4778	24,02	74,0				
67,91	1671,45	0,1248	1,3790	19,48	76,0				
 69,06	829,16	0,1248	1,3589	9,66	76,5				

Tabel 6. Data FWHM untuk nanopartikel ZnO yang disintesis menggunakan zink asetat dihidrat									
Angle (20)	Height (counts)	FWHM	d-value [Å]	Relative intensity	Crystallite size				
				(counts) (%)	(nm)				
31,80	6848,25	0,1791	2,8140	58,24	45,7				
34,46	5159,08	0,1791	2,6025	43,87	45,9				
36,28	11758,78	0,2047	2,4761	100,00	40,4				
47,54	2458,72	0,1791	1,9124	20,91	47,9				
56,60	3687,88	0,1248	1,6247	31,36	71,5				
62,86	3213,59	0,1248	1,4771	27,33	74,0				
66,34	496,28	0,1248	1,4072	4,22	75,2				
67,95	2632,41	0,1248	1,3783	22,39	75,9				
69,09	1200,77	0,1248	1,3584	10,21	76,3				

Dari data XRD menunjukkan prekursor mempengaruhi struktur dan ukuran kristal *nanopowders* ZnO. Zink asetat dihidrat adalah prekursor terbaik untuk menyiapkan bubuk nano ZnO. Zink asetat dihidrat adalah jenis prekursor non-alkoksida (bahan awal) yang memiliki keasaman rendah (ion asetat) (Ba-Abbad *et al.*, 2013). Pengotor ZnO dengan prekursor zink asetat dihidrat belum ditemukan. Ukuran kristal ZnO yang dipreparasi dengan menggunakan prekursor ini sangat kecil. Partikel terkecil akan mempengaruhi luas permukaan yang besar. Aplikasi *nanopowder* ZnO dapat digunakan sebagai fotokatalis dan adsorben.

Pengaruh Suhu Kalsinasi pada Ukuran Kristal

Pola XRD ZnO *Nanopowder* yang dipreparasi pada suhu 400 dan 600°C dapat dilihat pada Gambar 2. Gambar 2a merupakan pola XRD ZnO yang disintesis pada suhu 400 °C. Pada data ini, setiap struktur kristal *nanopowder* ZnO merupakan kristal yang sempurna. Puncaknya terlihat pada $2\theta = 31,74$; 34,39; 36,24; 47,51; 56,56; 62,80; 66,35; 67,89; dan 69,07. Pola XRD diindeks sebagai struktur wurtzit heksagonal ZnO (Petersen *et al.*, 2009) dan (Bu, 2015) (Kartu PDF No. 01-078-2585) dengan berbagai bidang difraksi [100], [002], [101], [102], [110], [103], [200], [112] dan [201], masing-masing. Ukuran kristal bubuk nano ZnO yang dibuat pada suhu 400 °C adalah 30-52 nm (Tabel 7). Dari gambar tersebut, tidak terindikasi adanya pengotor. Ini menegaskan bahwa sampel ZnO dalam kemurnian tinggi (Ba-Abbad *et al.*, 2013).

Gambar 2. Pola XRD ZnO nanopowder yang disintesis pada suhu a) 400 °C dan b) 600 °C

Tuber 7. Duta 1 Willer dan dikuran Kilstar Zilo disintesis pada 100 °C								
Angle (20)	Height (counts)	FWHM	d-value [Å]	Relative intensity	Crystallite size			
-				(counts) (%)	(nm)			
31,74	5120,13	0,2047	2,8188	54,42	39,97			
34,39	4846,86	0,2047	2,6077	51,51	40,20			
36,24	9408,96	0,2303	2,4788	100,00	35,89			
47,51	1520,92	0,2558	1,9136	16,16	33,60			
56,56	2649,08	0,1791	1,6272	28,15	49,85			
62,80	2072,25	0,2047	1,4796	28,15	44,95			
66,35	309,28	0,3070	1,4088	3,29	30,60			
67,89	1719,27	0,1791	1,3806	18,27	52,73			
69,07	856,29	0,2047	1,3598	9,10	46,63			
	Angle (20) 31,74 34,39 36,24 47,51 56,56 62,80 66,35 67,89 69,07	Angle (2θ) Height (counts) 31,74 5120,13 34,39 4846,86 36,24 9408,96 47,51 1520,92 56,56 2649,08 62,80 2072,25 66,35 309,28 67,89 1719,27 69,07 856,29	Angle (2θ) Height (counts) FWHM 31,74 5120,13 0,2047 34,39 4846,86 0,2047 36,24 9408,96 0,2303 47,51 1520,92 0,2558 56,56 2649,08 0,1791 62,80 2072,25 0,2047 66,35 309,28 0,3070 67,89 1719,27 0,1791 69,07 856,29 0,2047	Angle (2θ) Height (counts) FWHM d-value [Å] 31,74 5120,13 0,2047 2,8188 34,39 4846,86 0,2047 2,6077 36,24 9408,96 0,2303 2,4788 47,51 1520,92 0,2558 1,9136 56,56 2649,08 0,1791 1,6272 62,80 2072,25 0,2047 1,4796 66,35 309,28 0,3070 1,4088 67,89 1719,27 0,1791 1,3806 69,07 856,29 0,2047 1,3598	Angle (20) Height (counts) FWHM d-value [Å] Relative intensity (counts) (%) 31,74 5120,13 0,2047 2,8188 54,42 34,39 4846,86 0,2047 2,6077 51,51 36,24 9408,96 0,2303 2,4788 100,00 47,51 1520,92 0,2558 1,9136 16,16 56,56 2649,08 0,1791 1,6272 28,15 62,80 2072,25 0,2047 1,4796 28,15 66,35 309,28 0,3070 1,4088 3,29 67,89 1719,27 0,1791 1,3806 18,27 69,07 856,29 0,2047 1,3598 9,10			

Tabel 7. Data FWHM dan ukuran kristal ZnO disintesis pada 400 °C

Pola XRD ZnO yang disintesis pada suhu 600 °C dapat dilihat pada Gambar 2b. Data menunjukkan puncak pada $2\theta = 31,70$; 34,34; 36,16; 47,45; 56,51; 62,78; 66,29; 67,86 dan 69,00. Puncaknya telah dikonfirmasi sebagai puncak wurtzite. Puncak dari *nanopowder* ZnO sangat berbentuk, yang menunjukkan kristalinitas yang tinggi. Semua refleksi dalam pola ini adalah fase heksagonal ZnO (Kartu PDF No. 01-076-0704) dengan berbagai bidang difraksi [100], [002], [101], [102], [110], [103], [200], [112] dan [201], masing-masing. Kisaran ukuran kristal bubuk nano ZnO yang disiapkan pada 600 °C adalah 35-62 nm (Tabel 8).

 Tabel 8. Data FWHM dan ukuran kristal ZnO disintesis pada 600 °C								
 Angle (2θ)	Height (counts)	FWHM	d-value [Å]	Relative intensity	Crystallite size			
 - · ·				(counts) (%)	(nm)			
 31,70	4796,14	0,1791	2,8229	55,62	45,70			
34,34	4261,83	0,1791	2,6110	49,43	45,85			
36,16	8622,39	0,2303	2,4839	100,00	35,89			
47,46	1640,30	0,2303	1,9158	19,02	37,05			
56,51	2816,30	0,2047	1,6284	32,66	43,66			
62,77	2273,74	0,2303	1,4802	26,37	39,97			
66,29	386,03	0,1535	1,4100	4,48	61,20			
67,86	1863,80	0,1535	1,3812	21,62	61,75			
69.00	902.99	0.1791	1.3611	10.47	52.73			

Sintesis nanopowders ZnO telah dilakukan dengan berbagai temperatur. Variasi suhu adalah 400 dan 600 °C. Dari pola XRD, temperatur kalsinasi mempengaruhi struktur dan morfologi serbuk ZnO. Temperatur terbaik untuk preparasi ZnO adalah 400 °C yang menghasilkan ZnO berukuran kecil sekitar 30-52 nm. Penambahan etilen glikol sebagai aditif menghasilkan kristal ZnO yang lebih kecil. Kristal yang kecil akan menghasilkan luas permukaan yang lebih tinggi.

Analisis SEM pada Gambar 3 menunjukkan foto SEM dari nanopowders ZnO. Pengaruh berbagai prekursor dipelajari untuk mendapatkan pemahaman yang lebih baik tentang bentuk ZnO. ZnO nanopowder yang dibuat dengan menggunakan zink asetat dihidrat (Gambar 3a) menunjukkan aglomerasi kecil dengan bentuk bulat (Ba-Abbad et al., 2013). ZnO nanopowder hasil sintesis zink klorida (Gambar 3b) menunjukkan struktur kubik berpori. ZnO nanopowder yang dibuat dengan menggunakan zink sulfat heptahidrat (Gambar 3c) menggambarkan morfologi seperti ranting dengan ukuran distribusi yang seragam. Struktur dan ukuran kristal dipengaruhi oleh prekursor.

Gambar 3. Foto SEM ZnO nanopowders yang disintesis dengan menggunakan a) zink asetat dihidrat; b) zink klorida; dan c) zink sulfat heptahidrat

Gambar 4 menunjukkan karakterisasi SEM dari ZnO pada berbagai temperatur. Mikrograf ini menunjukkan perbedaan dalam mikrostruktur dari nanopowders ZnO disiapkan pada suhu yang berbeda. Struktur mikro sampel ZnO pada Gambar 4a pada suhu 400 °C memiliki butiran yang kecil (Ba-Abbad et al., 2013). Di sisi lain, sampel ZnO yang dikalsinasi pada suhu 600 °C (Gambar 4b) memiliki bulk yang terpisah dengan jelas dan juga menunjukkan bentuk seperti jarum. Saat suhu kalsinasi meningkat,

menciptakan batas butir dan aglomerasi menghilang. Pembuatan ZnO dengan penambahan etilen glikol menghasilkan mikrostruktur yang homogen.

Gambar 4. Foto SEM dengan variasi temperature kalsinasi a) 400 °C dan b) 600 °C

Simpulan

Serbuk nano ZnO berhasil disintesis dengan teknik sol-gel sederhana dengan menggunakan aditif etilen glikol. Prekursor dan temperatur mempengaruhi struktur dan morfologi serbuk ZnO. Studi XRD menunjukkan adanya kristal wurtzite. Kisaran ukuran kristal *nanopowders* ZnO diperoleh 37-84 nm. Mikrograf SEM dari *nanopowders* ZnO dengan prekursor zink asetat dihidrat dan zink klorida berbentuk bulat dan prekursor berbentuk seperti ranting untuk prekursor zink sulfat heptahidrat.

Daftar Pustaka

- Agarwal, M. B., Sharma, A., Malaidurai, M., & Thangavel, R. 2018. Effect of Sn doping on structural, mechanical, optical and electrical properties of ZnO nanoarrays prepared by sol-gel and hydrothermal process. *Superlattices and Microstructures*, 117: 342–350.
- Alves, M. M., Andrade, S. M., Grenho, L., Fernandes, M. H., Santos, C., & Montemor, M. F. 2019. Influence of apple phytochemicals in ZnO nanoparticles formation, photoluminescence and biocompatibility for biomedical applications. *Materials Science and Engineering C*, 101: 76–87.
- AlZoubi, T., Qutaish, H., Al-Shawwa, E., & Hamzawy, S. 2018. Enhanced UV-light detection based on ZnO nanowires/graphene oxide hybrid using cost-effective low temperature hydrothermal process. *Optical Materials*, 77: 226–232.
- Ba-Abbad, M. M., Kadhum, A. A. H., Bakar Mohamad, A., Takriff, M. S., & Sopian, K. 2013. The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol-gel technique. *Journal of Alloys and Compounds*, 550: 63–70.
- Bu, I. Y. 2015. Enhanced photocatalytic activity of sol-gel derived ZnO via the co-doping process. Superlattices and Microstructures, 86: 36–42.
- Fragalà, M. E., Di Mauro, A., Cristaldi, D. A., Cantarella, M., Impellizzeri, G., & Privitera, V. 2017. ZnO nanorods grown on ultrathin ZnO seed layers: Application in water treatment. *Journal of Photochemistry and Photobiology A: Chemistry*, 332: 497–504.
- Gharagozlou, M., Baradaran, Z., & Bayati, R. 2015. A green chemical method for synthesis of ZnO nanoparticles from solid-state decomposition of Schiff-bases derived from amino acid alanine complexes. *Ceramics International*, *41*(7): 8382–8387.
- Gupta, A., & Srivastava, R. 2018. Zinc oxide nanoleaves: A scalable disperser-assisted sonochemical approach for synthesis and an antibacterial application. *Ultrasonics Sonochemistry*, *41*: 47–58.
- Puneetha, J., Kottam, N., Nagaraju, G., & Rathna, A. 2020. Visible light active ZnO nanostructures prepared by simple co-precipitation method. *Photonics and Nanostructures Fundamentals and Applications*, 39: 100781.
- Kumar, S., Sahare, P. D., & Kumar, S. 2018. Optimization of the CVD parameters for ZnO nanorods growth: Its photoluminescence and field emission properties. *Materials Research Bulletin*, *105*: 237–245.
- Li, Q., Chen, D., Miao, J., Lin, S., Yu, Z., Cui, D., Chen, X. 2021. Highly sensitive sensor based on ordered porous ZnO nanosheets for ethanol detecting application. *Sensors and Actuators, B: Chemical*,

326: 128952.

- Mahmood, K., Khalid, A., & Mehran, M. T. 2018. Nanostructured ZnO electron transporting materials for hysteresis-free perovskite solar cells. *Solar Energy*, 173(July): 496–503.
- Moulahi, A., & Sediri, F. 2016. Controlled synthesis of nano-ZnO via hydro/solvothermal process and study of their optical properties. *Optik*, *127*(19): 7586–7593.
- Petersen, J., Brimont, C., Gallart, M., Crégut, O., Schmerber, G., Gilliot, P., Dinia, A. 2009. Optical properties of ZnO thin films prepared by sol-gel process. *Microelectronics Journal*, 40(2): 239–241.
- Petrović, Ž., Ristić, M., Marciuš, M., Ivanda, M., Durina, V., & Musić, S. 2016. Hydrothermal processing of electrospun fibers in the synthesis of 1D ZnO nanoparticles. *Materials Letters*, *176*: 278–281.
- Qin, W., Li, T., Li, Y., Qiu, J., Ma, X., Chen, X., Zhang, W. 2016) A high power ZnO thin film piezoelectric generator. *Applied Surface Science*, *364*: 670–675.
- Rafiee, Z., Roshan, H., & Sheikhi, M. H. 2021. Low concentration ethanol sensor based on graphene/ZnO nanowires. *Ceramics International*, 47(4): 5311–5317.
- Shetti, N. P., Bukkitgar, S. D., Reddy, K. R., Reddy, C. V., & Aminabhavi, T. M. 2019. ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. *Biosensors and Bioelectronics*, *141*(June): 111417.
- Skriniarova, J., Suslik, L., Andok, R., Pudis, D., Schaaf, P., & Wang, D. 2019. Effect of a thin Au and ZnO layer on optical properties of 1D PhC structures patterned in LED surface. *Optik*, 199(August),: 163333.
- Yu, H., Fan, H., Wang, X., Wang, J., Cheng, P., & Zhang, X. 2014. Template-free sonochemical synthesis of flower-like ZnO nanostructures. *Physics Letters, Section A: General, Atomic and Solid State Physics*, 378(45): 3315–3318.
- Yuan, Z., Wang, W., Wu, H., Nie, F., & He, J. 2020. A solution-processed ZnO quantum dots ultraviolet photodetector with high performance driven by low operating voltage. *Materials Letters*, 278: 128413.
- Zhang, X., Chen, J., Wen, M., Pan, H., & Shen, S. 2021. Solvothermal preparation of spindle hierarchical ZnO and its photocatalytic and gas sensing properties. *Physica B: Condensed Matter*, *602*: 412545.