Economics Development Analysis Journal 7 (4) (2018)

Economics Development Analysis Journal

http://journal.unnes.ac.id/sju/index.php/edaj

Impact of Trump's Phenomenon, Brexit, & Oil Prices Fluctuation Toward Indonesia's Economic Growth

Abdul Holik[⊠]

Pasim National University

Article Information

History of Article: Received July 2018 Accepted September 2018 Published November 2018

Keywords: uncertainty, globalization, economic growth

Abstract

This paper tries to find impact of global uncertainties toward Indonesia's economic growth. Several problems which will be discussed in this paper namely: impacts of President Donald Trump's policies, Brexit, and uncertainty regarding crude oil prices. It conducted from 1st quarter of 2010 until 1st quarter of 2017. The method of analysis used here is VECM (Vector Error Correction Model). We use dummy variable to capture the specific change of economic policies when Brexit and Trump's emergence appear as the major issues which attract attention around the world. We consider these as the uncertainties which influence global society. Based on the result, there is positive impact of economic policy uncertainty in UK in the long-run. When Brexit was taken into account, in the short-run, it also has positive impact toward Indonesia's economic growth. Meanwhile economic policy uncertainty in the US generates negative impact on Indonesia's economic growth. But Trump's emergence in the US presidency produces positive impact in the short-run. Oil price fluctuation as the latest shock in the global context has positive significant impact on Indonesia's economic growth. We consider these results as ways to find breakthrough in understanding of changing policies from developed countries; that not all of them will contribute to negative matters. The conjecture, hunch, and any speculation must be postponed due to lack of convincing proofs.

© 2018 Universitas Negeri Semarang

⊠Correspondence Author:

Jalan Dakota 84, Sukaraja, Bandung City Jawa Barat

E-mail: abdulcholiq20@ymail.com

ISSN 2252-6965

INTRODUCTION

As we know when the elected US President Donald John Trump campaigned provocatively, international public has worried, and made sure that all changes done by him must be anticipated. It is clear enough that policy to mass deportation of illegal immigrants in America will effect seriously toward the composition of labor force. Nowadays there are many employments which get benefit from the illegal workers, especially informal jobs. To deport them with forcible way will exhaust energy and span long times, and economically many industries will get bankruptcy. Analysis of Moody's—one of the institution of economic think-thank-predicted that triumph of throwing back the illegal immigrants will take 8 years (Zandi et al., 2016).

Today we see that Trumps has launched the temporary prohibition of entering US border for some Middle East inhabitants which come from suspected clutch of terrorism: Iran, Iraq, Libya, Sudan, Somalia, Syria and Yemen. This policy indeed can be seen as a way to protect American people from radicalism ideology, but also can induce some unproductive isolation and horrible image. If we want to calculate the impact, maybe there are many American losses than what they can get. This overweening tendency surely has been addressed by Trump previously when he campaigned for the election, by building wall of barrier between USA -Mexico border. Because of lack of proofs against the illegal immigrants, that contra-productive policy finally has never been issued.

In other side, UK divorce with European Union is wallop for the union because the country actually did not get many benefits. Choosing Brexit significantly will impact the partners of trade around the world. Many economists estimate UK's economic growth will be lower, and investment in European Union also weakens. Of course UK starts since now to renegotiate partnership with other nations in order to keep the potential consumers' trust.

We also now must face fluctuation of oil prices seriously. Current price of the black gold

price is about \$50 per barrel. The low price of crude oil has made economy of oil exporters got into turmoil, like Venezuela. It is because that nation has made profit of oil sector as tools to subsidize people welfare. When oil price turns down. welfare's society also decreases. Fortunately Indonesia has been out of dependence zone on crude oil benefits, so that when the price fluctuates uncontrollably we did not get the impact. However, some Indonesia's partners in trade cannot escape from the impact, which unfortunately in turn will contribute to changing in our economy. This indirect impact of the oil fluctuation basically something we must consider seriously. Any riots in Middle-East countries which are exporters of oil appear cannot lift back the price of that black gold, due to huge exploration out of those countries has been successful.

By considering these three problems above, this paper aims to scrutinize any matters which will alter global economy, especially the impact toward Indonesian economic growth. Nowadays we cannot close our eyes that life of human being is interconnected without limits, and rigid boundary, so that any phenomenon happening in one region can determine condition of many people in the other side.

This research tries to enrich discourse of policies' impact from developed nations on developing country's economic growth. This study conducted to show that some controversial issues regarding new presidency in US does not result some messy troubles which worried by some experts. Besides, it also wants to contribute to our understanding about the importance of maintaining economic security when facing uncertainties which caused by global matters. It seems true that some terrifying minds should be anticipated while we try to find the alternative solution to mitigate real problems which will be met. Some experts have learnt the possibilities regarding Donald John Trump presidency several months earlier before he won the election. They mostly show pessimism about the future of USA. Trump is known often address provocatively sensitive issues and his proposals to develop USA seem less elegant. For instance,

Trump wanted to cut special taxes for companies and individual. Even the tax of estate and gift will be deleted as well. But he wanted to increase income tax. He has argument that if country wants people to live prosperously the first thing what must be done is to provide smooth regulation of investment. Trump wanted to actualize it by pushing private sectors in order to be able to expansion aggressively. This is not good policy for some people.

In this research we start an analysis by the assumption that Donald Trump since his appearance has caused "trouble" in political communication. Not only in USA national context, but also triggers many speculations in global scale. Anxieties of many stakeholders around the world who feel their interest must be distracted by Trump's speech cannot be neglected. They surely will launch retaliation against Trump, in this matter of course against official US' policies.

In other side, the discourse of UK discharging from European Union (EU) also triggers many speculations. All this time UK is believed as one of the strongest nation in EU. Discharging of UK will cause instability of regional economy, and their trade partners. In this matter, Indonesia also will face the consequences. Both Trump's policies and Brexit have serious influence which affects many developing economies.

We intuit that impact of policy changes in those two countries will hamper Indonesia's growth through uncertainty. We use US' index of Economic Policy Uncertainty (USEPU), and UK's index of economic policy uncertainty (UKEPU) as proxies for those policy changes. This idea follows Bloom (2017) who analyzed the impact of uncertainty caused policy changes in US and UK, which must be faced by Australia.

Bloom (2017) draws several uncertainties in global context which originated from abroad. It is found that total shock which must be faced by Australia economy, for about 90 percent come from abroad, including the latest issue in 2016, namely hot debate and discourse of Brexit and emergence of Donald John Trump in US politics. Bloom found that the impact of uncertainty

toward economic growth, alleged strongly originated from investment channel. It is because firms have forward-looking behavior, rather than consumers. Therefore they will try to adjust the uncertainty with cautious behavior in deciding trade route. Even they will reduce investment, decreasing to share dividend, and cutting debt. It means that Trump and Brexit are bad factors for Australian economy.

Interesting feature proposed by Cumming and Zahra (2016) who predicted that UK discharging from European Union will generate some ease. For instance, UK companies can cooperate freely by making beneficial agreement mutually with their partners in trade from North America. Barriers of trade, regulation, and tariff imposed by EU will be gone, so that transaction becomes easier. But in other side, some entrepreneurs also will face several considerations with new policies, due to declining value of poundsterling. Cumming and Zahra (2016) illustrated that declining of GBP will cause the weakness of demand for products from exporters to UK. This in turn will produce the entrepreneurs to think hard to determine whether UK is a better place for businesses. There will be tendency that they want to move their businesses to other places. Such big exodus of entrepreneurs can make London loss its prominent role. Even it is not impossible the worsen impact which will be faced by UK will also spreads to US. So there are negative and positive impacts for English people themselves when Brexit takes place.

Beeson and Lee-Brown (2016) valued that triumph of Trump in presidential election will add cooperation uncertainty in East Asia regional. This matter emerges because of influential competition between US and China is very hard to be described. US is eager to maintain TPP (Trans-Pacific Partnership), meanwhile China has ambition to expand its influence via RCEP (Regional Comprehensive Economic Partnership). Trump urged in his campaign that he want to block import commodities from China, because he wanted to open expansion domestic industries. Of course what he said get applause directly from entrepreneurs who want

their business prospect becomes larger. But it is not good for bilateral US with China in the future.

Issue of uncertainty also comes from oil prices fluctuation. However, some researchers have interesting proofs regarding this matter. Abeysinghe (2001) conducted research from 1st quarter in 1982 until 2nd quarter in 2002, and concludes that oil prices fluctuation did not show the straight line in some regions. The impact is different for several countries of ASEAN, OECD, China, United States of America and Japan. Based on the analysis by using VARX method, we know that direct impact toward USA is negative. Meanwhile the indirect impact is also negative, although with enough stability rate at different stages. Interestingly, oil fluctuation's direct impact is positive toward Indonesia's and Malaysia's economic growth. It is contradictory with the indirect impact, which shows the negative sign.

Bernanke, Gertler and Watson (2004) found that increase of crude oil prices would worsen several USA's economic activities. Rise of world crude oil prices has negative relation with economic growth. Their research used VAR method, by using quarterly data from 1965 until 1995. According to them, one thing should be done by American government to overcome the negative impact of oil prices' rise is to lower interest rate at 900 basis points or to make it fixed for several times (Bernanke, Gertler & Watson, 2004).

In other side, Hamilton and Herrera (2004) stated that what Bernanke, Gertler and Watson (2004) found was invalid. They run recalibration over the analysis. According to these two prominent economists, in the essay of three economists', the research should use VAR analysis which included more lags: between 12 until 16. This matter aimed to capture shock of world crude oil prices clearly. Hamilton and Herrera test again the data which used by Bernanke, Gertler and Watson (2004), and concluded that impact of oil prices' shock in decreasing US' economic growth was more tremendous than what they found (Hamilton and Herrera, 2004).

Gupta (2007) Clement, Jung and addressed that increase of crude oil prices negatively toward influences Indonesia's economic growth. Their research used CGE (Computable General Equilibrium), with data from 1994 until 2002. In their finding, there was a proof that reduction of subsidy would cause increase of oil prices among the domestic market, and also all costs of other economic sectors, which is being followed by decrease of consumer demands, amount of production, and people's income. It generated horrible condition. Their analysis showed that abolishment of oil subsidy at 1 percent generated drop of real output growth at 2%. In this context, oil price fluctuation must be anticipated through wise polices to sustain social welfare.

This research has advantages rather than other researches due to attempt to find relationship impact of uncertainty from two big countries (USA and UK) toward developing country such as Indonesia. The result of this study will add literature regarding uncertainty in the context of emerging market as the vulnerable economy.

RESEARCH METHODS

This research starts since 1st quarter 2010 until 1st quarter in 2017. We choose this period due to magnitude of problems caused by any changes conducted in those two countries (USA and UK) that have direct or indirect impact toward condition of other countries especially developing country like Indonesia. By reminding the difficulties to find precise proxy for policy variable of President Donald John Trump and Brexit, we consider to use dummy variable to show the starting of those uncertainties. Trump started his campaign since June 2016, and issue of Brexit getting hot since early 2016. We choose early 2016 for dummy variable as a cautionary act. These two events are uncertainty variables which we believe influence many countries around the world.

We use secondary data consisting of: Indonesian economic growth, Economic Policy Uncertainty (EPU) in US, Economic Policy Uncertainty (EPU) in UK and world crude oil prices. All data are from Federal Reserve Bank of St. Louis, Economic Research Division, except data of Indonesian economic growth are taken from ADB (Asian Development Bank).

Due to time series data, so we analyze stationary data firstly. The result shows that all data not stationary at level, but at first difference. Table of analysis as follows:

Table 1. Test of Stationay

	-	
Variable	t-statistic	Prob.*
GDP	-7.326403	0.0000
OIL	-5.223693	0.0002
UK's EPU	-4.758394	0.0008
US' EPU	-6.235398	0.0000

Source: Author's Calculation

Detail table of calculation can be seen in appendix 1. The test of stationary is important to show that all data in the analysis cannot generate spurious regression, so that the result can be convincing estimation.

We use VEC Method which is development of VAR. Previously we test cointegration to find the long-run impact among the variables, before decide VEC or VAR method. It is proven that there are two cointegrations. Thus, VECM is chosen as the best way to analyze. The table of cointegration test can be seen in appendix 2. The VEC Model is following:

$$\begin{split} \Delta Y_t &= \varphi_1 + \lambda_1 e_{t-1} + \gamma_{11} \Delta Y_{t-1} + \cdots \\ &+ \phi_{1p} \Delta Y_{t-p} + \psi_{11} \Delta X_{t-1} \\ &+ \chi_{11} \Delta Z_{t-1} + \tau_{11} \Delta T_{t-1} + \cdots \\ &+ \psi_{1q} \Delta X_{t-q} + \chi_{1r} \Delta Z_{t-r} \\ &+ \tau_{1s} \Delta T_{t-s} + \theta_1 D 1 + \varepsilon_{1t..} \\ \Delta X_t &= \varphi_2 + \lambda_2 e_{t-1} + \gamma_{21} \Delta X_{t-1} + \cdots \\ &+ \psi_{2q} \Delta X_{t-q} + \phi_{21} \Delta Y_{t-1} \\ &+ \chi_{21} \Delta Z_{t-1} + \tau_{21} \Delta T_{t-1} + \cdots \\ &+ \phi_{2p} \Delta Y_{t-p} + \chi_{2r} \Delta Z_{t-r} \\ &+ \tau_{2s} \Delta T_{t-s} + \theta_2 D 1 + \varepsilon_{2t} \end{split}$$

$$\begin{split} \Delta Z_t &= \varphi_3 + \lambda_3 e_{t-1} + \gamma_{31} \Delta Z_{t-1} + \cdots \\ &+ \chi_{3r} \Delta Z_{t-r} + \phi_{31} \Delta Y_{t-1} \\ &+ \psi_{31} \Delta X_{t-1} + \tau_{31} \Delta T_{t-1} + \cdots \\ &+ \phi_{3p} \Delta Y_{t-p} + \psi_{3q} \Delta X_{t-q} \\ &+ \tau_{3s} \Delta T_{t-s} + \theta_3 D 1 + \varepsilon_{3t} \\ \Delta T_t &= \varphi_4 + \lambda_4 e_{t-1} + \gamma_{41} \Delta T_{t-1} + \cdots \\ &+ \tau_{4s} \Delta T_{t-s} + \psi_{41} \Delta X_{t-1} \\ &+ \phi_{41} \Delta Y_{t-1} + \chi_{41} \Delta Z_{t-1} + \cdots \\ &+ \psi_{4q} \Delta X_{t-q} + \phi_{4p} \Delta Y_{t-p} \\ &+ \chi_{4r} \Delta Z_{t-r} + \theta_4 D 1 + \varepsilon_{4t} \end{split}$$

Where:

$$e_{t-1} = Y_{t-1} - \alpha - \beta X_{t-1} - \beta Z_{t-1} - \beta T_{t-1}$$

or $e_{t-1} = Residual$ simple linear regression

Y = Indonesia's GDP Growth

X = Crude Oil Prices

Z = UK's EPU (Economic Policy Uncertainty)

T = US' EPU (Economic Policy Uncertainty)

D1 = Dummy Variable

 $\gamma, \chi, \phi, \psi, \tau, \theta$ = Coefficient of each independent variables

 φ = Vector cointegration

 Δ = symbol of first difference

 ε = error in VECM

In the first equation GDP is dependent variable. In the second, oil prices variable is dependent variable. The third post UK's uncertainty index as dependent variable. The fourth contains US' uncertainty index as dependent variable. In running this analysis we transform all data into natural logarithm to ease analysis.

RESULTS AND DISCUSSIONN

Based on the empirical evidence that EPU (Economic Policy Uncertainty) both in UK and US has significant effect toward dependent variables. Full table of analysis can be seen in appendix 3. The estimation of VEC model in the long-run as follows:

Table 2. VECM Estimation with 2 Cointegration

Dependent Variable : Crude Oil Prices (in first Cointegration)						
Independent Variables	t-statistic	Coefficient				
UK's EPU	-6.60152	-10.94792				
US' EPU	6.83593	14.58093				
Dependent Variable: Indonesia's Ed	conomic Growth (in Second	Cointegration)				
Independent Variables t-statistic Coefficient						
UK's EPU	5.63520	0.928307				
US' EPU	-5.98606	-1.268305				

Source: Author's Calculation

Based on the estimation above, it appears that uncertainty in US and UK has significant impact on oil prices, and also on Indonesia's economic growth. This long-run analysis shows that the impact of UK toward oil prices is negative. Meanwhile impact of US is positive. It depicts that two countries launches different regulation in responding fluctuation of oil prices.

In other side, from the calculation we find positive impact of uncertainty in UK toward Indonesia's economic growth. It apparently should be noticed that many changed policies in the King Arthur's country has provided ease to some economic activities in Indonesia. It might because the changes are mainly to develop potential sectors, so that it benefits all. On other side, political situation in UK seem always stable. But the opposite impact occurs in US. USA is also partner of Indonesia in various economic agreements. However, uncertainty in the Uncle Sam's country triggers the weakness of Indonesia's economic growth. One of the problems generated from political disturbance and instability.

From the analysis in the short-run the calculation shows that dummy variable has positive impact toward Indonesia's economic growth. The detail estimation can be seen at appendix 3. It means policy change in UK, by introducing Brexit, and in USA by emerging President Donald Trump have positive significant effect on Indonesia's economic growth, due to optimism in both agendas. That effect is 0.03 percent. This also means that threats of those events cannot be proven.

In this context actually we can say that what UK's people and Trump did with their country by choosing those hot policies is like what we do for our nation. We can say that what they did are choices based on patriotism as love to their country. If they succeed to make their country more productive, and prosperous, it also influences their partners in many economic agendas to get gains, in trade or investment for example. Therefore, policy changes in other nations not always generate disrepute for international relation, even it is not impossible that it can induce better situation for all.

From the calculation result, it is also noted that the impact of Trump and Brexit toward crude oil prices, recorded significant positive effect at 0.20 percent. It means that policy changes in USA by emerging Trump and in UK by Brexit agenda will lift oil prices, because the demand for oil will increase as productivity rises. The more their economic activities rise, the more their needs for oil increase.

short-run, Interestingly, the uncertainty in the two countries without Brexit and Trump's emergence cannot be drawn. Either EPU in UK or in US does not show significant Nevertheless, its impact clearly impact. influences toward oil prices. Uncertainty in UK influences positively oil prices at 0.60 percent in lag 1. The impact still appears in lag 3 at 0.32 percent. The uncertainty in US influences oil prices negatively at -6.68 percent in lag 1. Meanwhile the value changes to become -0.44 percent at lag 2, and continues to turn down at -0.24 percent in lag 3.

It is also interesting to be noticed that oil prices influence positively toward Indonesia's economic growth at 0.29 percent at lag 1. It increases in lag 2 at 0.31 percent, and decreases at 0.12 in lag 3. This positive impact due to Indonesia until now is still being exporter of oil, although not as much as in period of 1970s. Oil prices also affect UK's EPU, but negatively at 1.6 percent at lag 1, and -2 percent at lag 2. It means UK needs more the black gold to support many development agendas, which cannot be fulfilled by domestic production, so that the increase of oil price will influence negatively. In this analysis we cannot get influence of oil prices on US' EPU, so that it can be ignored.

From the estimation we also get the information that economic policy uncertainty in UK has negative significant impact toward US' economic policy uncertainty. Since first lag, namely at -1.39 percent, proceeds to -1.19 percent in second lag, and finally in the third lag at -0.75 percent. But it does not cause otherwise; US' EPU does not impact at all on UK's.

Analysis of impulse response shows that respond of GDP in facing shock of uncertainty in UK and US fluctuates well in every quarter. Table of analysis can be seen in appendix 4. In the first quarter, the shock of EPU in UK shows positive sign. However in 3th period it values negative. Then fluctuates rise and down continually until 44th period becomes negative. Then it becomes positive until quarter 48. Meanwhile shock of US' uncertainty in period 3 values negative, then rises and down again in 5th period. This shock is almost not different with UK's EPU. The fluctuation continues to move until 45th period where the value is positive, and then turns down again since period 46 until 48.

Shock of oil prices is drawn positive in the first period. But in the second period it becomes negative, and then fluctuates until 16th period gets positive value. Then since 17th period until 48th quarter the value is always negative. From this we must be aware that fluctuation of oil prices cannot be predicted, and the impact somehow unexpected. This finding can be alert that government of Indonesia must be ready to undertake special programs like to cut

dependence radically on fossil fuel, in order oil prices cannot contribute to alter sensitive compositions in economic agenda, especially if it is originated from indirect impact.

Result of analysis shows, that Indonesia's economic growth is affected very much by economic growth itself, then by UK's EPU, oil prices and finally by US' UPE. But in eighth period and forth until 48th period, we see that the contribution of UK's EPU rises and influences GDP more than other variables, including GDP itself. This signifies that economic growth in small open economy sometime cannot sustain in facing uncertainty from abroad, especially from developed countries. The detail result can be seen in appendix 5.

From the analysis we also get revelation that US' EPU is affected very much by UK's EPU, then oil prices. It shows that there is strong relationship between two countries regarding economic cooperation and also consequences. The bilateral agreement sometimes produces unexpected impact and also interdependency between two countries. Which country too dependent upon the others is can be seen from the policies conducted by stakeholders of each other. Meanwhile UK's EPU is affected by UK's EPU itself, then by oil prices.

The worries which very often addressed by several analysts that triumph of Donald John Trump as 45th President of USA would cause troubles for Muslim countries, such as Indonesia, in fact apparently did not happen. It is clear that Indonesia is not one of the enemies of USA. This research clearly finds different result of previous works which illustrated the negative effect if Trump elected as President of US.

Trump basically does not consider all Muslim nations as threatens against US. Although recently anti-Islam sentiment apparently emerges from Trump's speeches, it did not support any anomalies of policies toward Indonesia. We can say that his targets were not Muslims of Indonesia who have been known hospitable, courteous, and friendly with all people around the world.

Indeed, one survey has been launched that recorded that the anxieties of US Muslim

induced by Trump campaign which is ostensible to hate Muhammad's religion have been culminated. Even one fifth of them have prepared plans what have to be done if situation is getting worse in USA. Trump's hatred campaign which he addressed to Muslim triggered terrifying thinking (http://m.republika.co.id). Donald Trump after he won election assigned a temporary ban to enter US zone for several inhabitants from countries which have been identified as clutch of terrorism: Iran, Iraq, Sudan, Libya, Somalia, Syria, and Yemen.

However, we have to consider other things, and not determine absolutely that Trump is suffering Islam phobia. There are many reasons we must doubt that tendency, especially when he visits to Saudi Arabia and speaks friendly with King Salman on 20th May 2017, to renegotiate bilateral relationship between two countries (https://m.tempo.co). It proved that what opposed by Trump are Islam terrorists and not Muslim as a whole. Interestingly, multilateral relation of US with several Muslim nations is getting strong, especially in combating terrorism around the world. We think Trump actually realizes profoundly the peace message of Islam, so that he can distinguish nicely what Islam and what terrorism is.

Changes of policies in UK, including Brexit, utterly did not induce negative impact to Indonesia's economic growth. Our research supports positive impact of Cumming and Zahra (2016). We have good reasons why it happens. All this time, people in UK want their country quit from European Union because there is no real benefit for them. UK paid in billion poundsterling as payment for membership. But what they get is not proportional. They just waste many resources to get nothing. Even there is conviction that Britain is just only an escape for some European people facing hardship in looking for jobs in their homeland. This matter clearly is problem especially due to labor force composition in UK.

In other side, supporters of EU reasoned that UK's security from terrorist attack can be eliminated and guaranteed, as UK is still of member of EU. This belief is very strong due to

power of EU is indisputable. However, attack in Brussels, Belgium, and other big cities in Europe signed that terrorists attack to heart of Europe conducted systematically and effectively to frighten people. It means that becoming member of EU is not guarantee that UK can be free from terrorist target. ISIS always sends their agents to around the world to threaten with coward mostly civilians in public facilities.

The supporters of EU also addressed that image of UK will lower in international relation if quit from EU. Whereas all this time it is not because of membership in EU which makes their country outstanding in the world, but it because of the power and positive role. The membership of EU is only one little issue which may lift prestige of UK, but not too significant. There are many opportunities where UK can contribute more in the international context. By these considerations above, Brexit seems more rational rather than continuing in EU membership. The benefit of Brexit is clear enough and it is also can be gained by other nations which has bilateral partnership with UK, such as Indonesia.

Indonesia has strong diplomatic relation with UK and USA. There are many suppositions that any change which happened in the two countries will influence very much toward Indonesia, not just from economic side but also politics and security as well. It is said because US and UK have huge investment in Indonesia everything uncertain in those countries can hamper Indonesia's condition. However, we should know that USA and UK are not sole nations which have good relationship with Indonesia. Even trade relation of Indonesia to date is tied strongly with other Asian countries, instead of Europe or America. In addition, policy changes are not something decent to be feared, at least for recent periods. Of course we do not deny that policy uncertainties in developed countries will affect small open economy like our nation. But if we have good plans and proper outward looking agenda, it is not to be needed to be worried very much.

Issue of Trump and Brexit almost happened in same direction with fluctuation of world crude oil prices which cannot influence Indonesia's economic activities. Even in Persident Joko Widodo'e era, when world crude oil prices get down, the price of fuel in Indonesia rises. Many ordinary people maybe do not know exactly why it happened. But in fact the government of Indonesia has launched better policy to stabilize price of fossil fuel in domestic market. So when oil prices in global market lifted, fuel price in Indonesia did not change, so that all activities among the society can run as usual. It can be proof that Indonesia has succeeded to stabilize the demand and price of oil as source of energy. It is also urgent that we must find various alternative energies to support demand of Indonesian people which every year always rise. The dependence on crude oil price is past not of Indonesia. This research contradictory with previous works which described negative impact of oil price fluctuation on Indonesia's economic growth. We can apprehend it, because they conducted research in years when Indonesia still depended on fossil fuel and cannot control price in the domestic market.

CONCLUSION

This paper aims to depict impact of Brexit, Trump's emergence, and oil prices fluctuation toward Indonesia's economic growth. This shows that uncertainty in UK and US has different significant impact on Indonesia. UK's EPU has positive one, meanwhile US' EPU has negative impact clearly. Nevertheless, either Brexit or Trump has positive impact on Indonesia's economic growth. It is proven those two worried occasions in UK and US support positively to boost welfare for all people around the world, not just in those countries.

Interestingly fluctuation of oil prices has positive impact toward Indonesia's economic growth in the short-run. We cannot capture the long-run impact due to cointegration analysis. This finding actually is in line with fact had happened, namely oil prices cannot influences any fuel prices in Indonesia. Our government has launched policy which can avoid negative effect of world crude oil price fluctuation. Nevertheless, this paper faces several weaknesses. For example, we use EPU (Economic Policy Uncertainty) as

proxies for Brexit and Trump's policies by relying on intuition through dummy variable. Of course we realize there are many possibilities to analyze them by more precise approaches. Besides, the duration of the study which we conducted is short enough. We can involve longer period of research to get other reach.

REFERENCES

- Abeysinghe, T. (2001). Estimation of direct and indirect of Oil Price on Growth. *Economic Letters*, 73, 147-153.
- Bachman, P., Bhattarai, K., Conte, F., Haughton, J., & Tuerck, D. G. (2016). The Economic Effects of Trump 2.0, The Candidate's Updated Tax Proposal, The Beacon Hill Institute: Boston.
- Beeson, M., & Lee-Brown, T. (2017). The Future of Asian Regionalism: Not What It Used to Be? *Asia & The Pacific Policy Studies*, 1 12.
- Bernanke, B. S., Gertler, M., & Watson, M. W. (2004).

 Reply: Oil Shocks and Aggregate

 Macroeconomic Behavior: The Role of

 Monetary Policy, *Journal of Money, Credit and*Banking, 36 (2), 287-291.
- Bloom, N. (2017). Observation on Uncertainty, *The Australian Economic Review*, 50 (1), 79 84.
- Clements, B., Jung, H., & Gupta, S. (2007). Real Distributive Effects of Petroleum Price Liberalization: the Case of Indonesia, *The Developing Economies*, XLV-2, 220-237.
- Cumming, D. J., & Zahra, S. A. (2016). International Business and Entrepreneurship Implications of Brexit, *British Journal of Management*, 27, 687 692.
- Hamilton, J. D. & Herrera, A. M. (2004). "Comment: Oil Shocks and Aggregate Macroeconomic Behavior: The Role of Monetary Policy", *Journal of Money, Credit, and Banking,* 36(2), 265-286.
- Smales, L. A. (2016). The Role of Political Uncertainty in Australian Financial Markets, *Accounting* and Finance, 56, 545 575.
- Zandi, Mark, Chris Lafakis, Dan White, & Adam Ozimek (2016). The Macroecnomic Consequences of Mr. Trump's Economic Policies. Moody's Analytics.
- Talavera, Á. (2017). World Economic Prospects.
 Oxford Economics.

Website:

Asian Development Bank:

https://aric.adb.org/indonesia/data, data retrieved on 30th June 2017.

- Federal Reserve Bank of St. Louis, Economic Research Division:
- https://alfred.stlouisfed.org/series?seid=UKEPUIN DXM, data retrieved on 30th June 2017.
- https://fred.stlouisfed.org/series/USEPUINDXD, data retrieved on 30th June 2017.
- https://fred.stlouisfed.org/series/DCOILWTICO, data retrieved on 30th June 2017.

News:

- http://m.republika.co.id/berita/internasional/global /17/03/24/onar1p335-survei-satu-dari-tiga-muslim-as-khawatir-terhadap-keselamatan-mereka, retrieved on 30th June 2017.
- https://m.tempo.co/read/news/2017/05/20/115877 113/donald-trump-tiba-di-arab-saudi-lawatanpertama-sebagai-presiden, retrieved on 30th June 2017

APPENDIX

Test of Stationary

1.1. GDP

Null Hypothesis: GD				
Exogenous: Constant				
Lag Length: 0 (Auton	natic - based o	n SIC, maxlag	g=6)	
	t-Statistic	Prob.*		
Augmented Dickey-Fuller test statistic			-1.331291	0.6007
Test critical values:	1% level		-3.689194	
5% level			-2.971853	
*MacKinnon (1996) o				

Null Hypothesis: LG				
Exogenous: Constant				
Lag Length: 0 (Autor	natic - based o	on SIC, maxlag	g=6)	
t-Statistic				Prob.*
Augmented Dickey-Fuller test statistic -7.326403				0.0000
Test critical values:	1% level		-3.699871	
	-2.976263			
*MacKinnon (1996) one-sided p-values.				

1.2. OIL

Null Hypothesis: OIL				
Exogenous: Constant				
Lag Length: 0 (Auton	natic - based o	n SIC, maxlag	g=6)	
t-Statis				Prob.*
Augmented Dickey-F	-0.797045	0.8045		
Test critical values:	1% level		-3.689194	
		-2.971853		
*MacKinnon (1996) o				

Null Hypothesis: LOI				
Exogenous: Constant				
Lag Length: 0 (Auton	natic - based o	n SIC, maxlag	g=6)	
	t-Statistic	Prob.*		
Augmented Dickey-Fuller test statistic			-5.223693	0.0002
Test critical values:	1% level		-3.699871	
	5% level			
*MacKinnon (1996) o				

1.3. UK's EPU

Null Hypothesis: UKEPU has a unit root				
Exogenous: Constant	-			
Lag Length: 1 (Autor	natic - based o	on SIC, maxlag	g=6)	
	t-Statistic	Prob.*		
Augmented Dickey-Fuller test statistic -2.274559				0.1868
Test critical values:	1% level		-3.699871	
5% level			-2.976263	
*MacKinnon (1996)				

Null Hypothesis: LU				
Exogenous: Constant				
Lag Length: 0 (Autor	natic - based o	on SIC, maxlag	g=6)	
	Prob.*			
Augmented Dickey-F	Augmented Dickey-Fuller test statistic -4.758394			
Test critical values:	1% level		-3.699871	
	-2.976263			
*MacKinnon (1996)				

1.4. US' EPU

Null Hypot				
Exogeno	us: Constant			
Lag Length	: 0 (Automati	ic - based on Sl	(C, maxlag=6)	
	t-Statist			
Augmented Dickey-Fuller test statistic -2.4			-2.456287	0.1365
Test critical values:	1% level		-3.689194	
5% level			-2.971853	
10% level -2.625121				
*MacKinnon (1996) one-sided p-values.				

Null Hypothesis: LUS				
Exogenous: Constant				
Lag Length: 1 (Auton	natic - based o	n SIC, maxlag	g=6)	
t-Statistic				Prob.*
Augmented Dickey-Fuller test statistic			-6.235398	0.0000
Test critical values: 1% level		-3.711457		
	5% level		-2.981038	
	10% level		-2.629906	

*MacKinnon (1996) one-sided p-values.	
---------------------------------------	--

2. Result of Contegration Test

Date: 07/01/1						
Sample (adjust	Sample (adjusted): 2011Q2 2017Q1					
Included obser	vations: 24 after a	adjustments				
Trend assumpt	ion: No determir	nistic trend (restri	cted constant)	,		
Series: LGDP	LOIL LUKEPU	LUSEPU				
Lags interval (i	n first differences	s): 1 to 3				
Unrestricted Co	ointegration Ran	k Test (Trace)				
Hypothesized		Trace	0.05			
No. of CE(s)	Eigenvalue	Statistic	Critical Value	Prob.**		
None *	0.964111	120.6684	54.07904	0.0000		
At most 1 *	0.723452	40.81253	35.19275	0.0111		
At most 2	0.266759	9.963607	20.26184	0.6434		
At most 3	0.6742					
Trace test indicates 2 cointegrating eqn(s) at the 0.05 level						
* denotes rejection of the hypothesis at the 0.05 level						
**MacKinnon	-Haug-Michelis ((1999) p-values				

3. Result of VEC Analysis

Vector Error Correction	Estimates			
Date: 07/01/17 Time:	09:46			
Sample (adjusted): 2011	Q2 2017Q1			
Included observations: 2	24 after adjustme	ents		
Standard errors in () &	t-statistics in []			
Cointegrating Eq:	CointEq1	CointEq2		
LOIL(-1)	1.000000	0.000000		
LGDP(-1)	0.000000	1.000000		
LUKEPU(-1)	-10.94792	0.928307		
	(1.65839)	(0.16473)		
	[-6.60152]	[5.63520]		
LUSEPU(-1)	14.58093	-1.268305		
	(2.13298)	(0.21188)		
	[6.83593]	[-5.98606]		
С	0.486145	-0.023242		
	(0.17136)	(0.01702)		
	[2.83702]	[-1.36545]		
Error Correction:	D(LOIL)	D(LGDP)	D(LUKEPU	D(LUSEPU
))
CointEq1	-0.054834	-0.229013	0.526176	-0.171823
	(0.16693)	(0.03396)	(0.54374)	(0.37542)
	[-0.32849]	[-6.74395]	[0.96770]	[-0.45768]
CointEq2	-1.470726	-2.638374	4.861495	0.124779

	(1.80260)	(0.38504)	(6.16520)	(4.25675)
	(1.89269) [-0.77705]	, ,	[0.78854]	[0.02931]
D(I OII (1))		[-6.85228]		
D(LOIL(-1))	-0.430701	0.299854	-1.600169	-0.332298
	(0.28313)	(0.05760)	(0.92226)	(0.63677)
D(I OII (2))	[-1.52121]	[5.20599]	[-1.73506]	[-0.52185]
D(LOIL(-2))	-0.347647	0.317615	-2.004962	0.060084
	(0.33871)	(0.06891)	(1.10332)	(0.76178)
D(LOH (2))	[-1.02637]	[4.60942]	[-1.81721]	[0.07887]
D(LOIL(-3))	-0.534136	0.129880	-1.342922	0.175142
	(0.28996)	(0.05899)	(0.94451)	(0.65213)
	[-1.84210]	[2.20182]	[-1.42182]	[0.26857]
D(LGDP(-1))	-0.525880	0.949030	-1.821720	0.666075
	(1.10377)	(0.22454)	(3.59538)	(2.48242)
	[-0.47644]	[4.22650]	[-0.50668]	[0.26832]
D(LGDP(-2))	0.958113	0.901711	-1.781474	-1.826440
	(0.88893)	(0.18084)	(2.89557)	(1.99924)
	[1.07783]	[4.98631]	[-0.61524]	[-0.91357]
D(LGDP(-3))	1.270544	0.609482	-2.051467	-0.246797
	(0.75607)	(0.15381)	(2.46280)	(1.70044)
	[1.68046]	[3.96257]	[-0.83298]	[-0.14514]
D(LUKEPU(-1))	0.602612	-0.031323	0.100557	-1.391092
	(0.23621)	(0.04805)	(0.76943)	(0.53125)
	[2.55113]	[-0.65183]	[0.13069]	[-2.61850]
D(LUKEPU(-2))	0.273375	-0.047877	0.265523	-1.196623
	(0.19687)	(0.04005)	(0.64128)	(0.44277)
	[1.38860]	[-1.19543]	[0.41405]	[-2.70259]
D(LUKEPU(-3))	0.329011	-0.042240	-0.045110	-0.759508
	(0.12744)	(0.02593)	(0.41513)	(0.28662)
	[2.58164]	[-1.62925]	[-0.10867]	[-2.64984]
D(LUSEPU(-1))	-0.684934	0.012739	-1.413335	1.155177
	(0.29332)	(0.05967)	(0.95546)	(0.65970)
	[-2.33508]	[0.21348]	[-1.47922]	[1.75107]
D(LUSEPU(-2))	-0.446345	-0.026450	-1.103521	0.608333
	(0.21746)	(0.04424)	(0.70836)	(0.48909)
	[-2.05249]	[-0.59789]	[-1.55785]	[1.24381]
D(LUSEPU(-3))	-0.240259	0.018932	-0.694132	0.411359
	(0.14021)	(0.02852)	(0.45672)	(0.31534)
	[-1.71354]	[0.66374]	[-1.51982]	[1.30448]
D1	0.207288	0.031498	0.246571	-0.095061
	(0.07613)	(0.01549)	(0.24797)	(0.17121)
	[2.72299]	[2.03389]	[0.99437]	[-0.55523]
R-squared	0.905187	0.948196	0.666065	0.862667
Adj. R-squared	0.757699	0.867612	0.146611	0.649038
Sum sq. resids	0.116384	0.004817	1.234883	0.588692
S.E. equation				
o.b. equation	0.113717	0.023134	0.370418	0.255754

Log likelihood	29.89245	68.11052	1.550408	10.44034
Akaike AIC	-1.241037	-4.425877	1.120799	0.379971
Schwarz SC	-0.504754	-3.689593	1.857083	1.116255
Mean dependent	-0.002095	0.008431	0.006402	0.020811
S.D. dependent	0.231019	0.063580	0.400976	0.431711
Determinant resid covar	iance (dof adj.)	7.57E-09		
Determinant resid covar	iance	1.50E-10		
Log likelihood		135.2523		
Akaike information crite	erion	-5.437696		
Schwarz criterion		-2.001705		

Lag-2:

Akaike information criterion	-2.194373
Schwarz criterion	0.438399

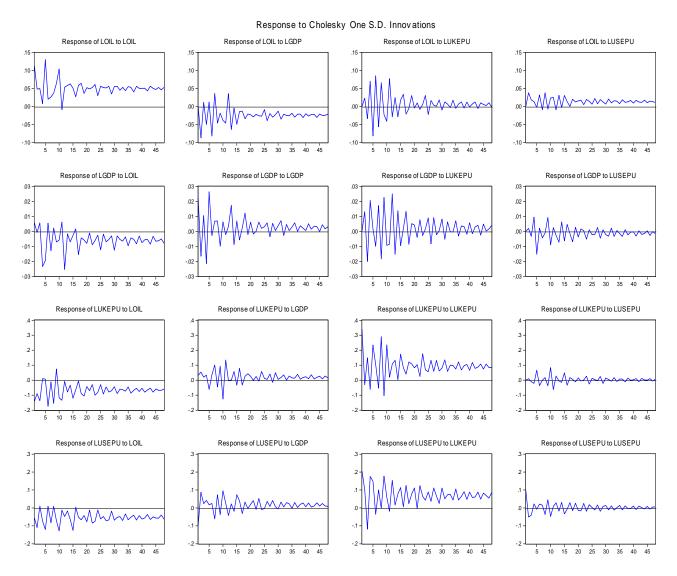
Lag-1:

Akaike information criterion	-2.020140
Schwarz criterion	-0.181383

4. Analysis of Impulse Response

Response of LOIL:				
Period	LOIL	LGDP	LUKEPU	LUSEPU
1	0.113717	0.000000	0.000000	0.000000
2	0.048749	-0.087490	0.023275	0.038071
3	0.050029	0.011593	-0.033649	0.018625
4	0.008266	-0.049660	0.070799	0.013838
5	0.130840	0.012674	-0.081731	-0.002112
6	0.020697	-0.082285	0.085713	0.032390
7	0.026473	0.036535	-0.056319	-0.008836
8	0.037177	-0.045960	0.066163	0.038318
9	0.064135	-0.018364	-0.022861	-0.007179
10	0.104830	-0.038245	-0.041396	0.023686
11	-0.009045	-0.046054	0.077504	0.025495
12	0.053848	0.035936	-0.028920	-0.009280
13	0.058649	-0.064208	0.025176	0.031246
14	0.062946	-0.003799	-0.028614	-0.002863
15	0.051667	-0.049479	0.018011	0.031024
16	0.027067	-0.014121	0.034175	0.013844
17	0.059113	-0.012624	-0.021026	0.000630
18	0.064876	-0.033791	-0.005500	0.020114
19	0.036680	-0.020894	0.030423	0.012797
20	0.052524	-0.022777	-0.004308	0.015761
21	0.048901	-0.028971	0.010179	0.017654
22	0.053111	-0.021718	-0.007719	0.005166
23	0.061603	-0.025699	0.005926	0.019703

24	0.020266	0.026971	0.020010	0.014401
	0.030366	-0.026871	0.030819	0.014491
25	0.056647	-0.008510	-0.022456	0.006567
26	0.052839	-0.039057	0.016798	0.022548
27	0.052074	-0.019064	0.003566	0.007668
28	0.056410	-0.029720	0.001089	0.019228
29	0.034926	-0.022313	0.018707	0.012911
30	0.056030	-0.012777	-0.009904	0.007057
31	0.056393	-0.035336	0.013070	0.021171
32	0.045520	-0.021199	0.006801	0.010332
33	0.053386	-0.024908	-0.003175	0.016075
34	0.044343	-0.025535	0.017866	0.014947
35	0.055599	-0.018585	-0.004958	0.008284
36	0.053521	-0.029653	0.006900	0.018893
37	0.040611	-0.021339	0.012873	0.011930
38	0.056238	-0.021236	-0.004122	0.013225
39	0.050671	-0.030872	0.012687	0.017033
40	0.050858	-0.019856	-0.000886	0.009587
41	0.050929	-0.026213	0.007037	0.017357
42	0.043640	-0.021987	0.012984	0.012375
43	0.056724	-0.021368	-0.005570	0.011860
44	0.050795	-0.030515	0.010633	0.017794
45	0.047389	-0.020602	0.005592	0.011058
46	0.052904	-0.024873	0.003065	0.015544
47	0.046827	-0.024318	0.010356	0.013339
48	0.053575	-0.021050	-0.001934	0.011606
Response of LGDP:				
Period	LOIL	LGDP	LUKEPU	LUSEPU
1	0.005660	0.022431	0.000000	0.000000
2	-0.000695	-0.016531	0.013186	0.001977
3	0.005642	0.010619	-0.019999	-0.003340
4	-0.023473	-0.021430	0.020660	0.009505
5	-0.019431	0.026518	0.001826	-0.015305
6	0.005471	-0.002745	-0.010060	0.002097
7	-0.012881	0.006853	0.017211	-0.004358
8	0.002236	0.006953	-0.018438	-0.001070
9	-0.007014	-0.009944	0.022680	0.009302
10	-0.005878	0.006334	-0.009318	-0.008956
11	0.006251	-0.002228	-0.008547	0.002499
12	-0.025385	0.003324	0.025084	-0.002582
13	-0.001595	0.017456	-0.015314	-0.007191
14	-0.007041	-0.008732	0.013774	0.006381
15	-0.002700	0.006968	-0.009536	-0.006394
16	0.001645	-0.005697	0.001750	0.004684
17	-0.015486	0.002334	0.013260	-0.001471
18	-0.004320	0.012158	-0.008650	-0.006971
19	-0.005748	-0.002108	0.005205	0.002768
1/	0.000170	0.002100	0.005205	0.002700


20	0.007071	0.00(1.01	0.00.4005	0.000750
20	-0.007961	0.006131	0.004237	-0.003753
21	-0.001081	-0.001750	-0.004038	0.001624
22	-0.008915	0.000124	0.007695	0.000516
23	-0.006201	0.006280	-0.002836	-0.005231
24	-0.002504	0.002016	0.001667	0.001027
25	-0.012325	0.003146	0.009053	-0.002263
26	-0.001854	0.005635	-0.008268	-0.002002
27	-0.006927	-0.003550	0.009208	0.002592
28	-0.005353	0.005354	-0.002252	-0.004499
29	-0.002988	0.000580	0.000494	0.001035
30	-0.012497	0.003713	0.008311	-0.002131
31	-0.002945	0.007114	-0.005313	-0.003206
32	-0.005433	-0.002789	0.006324	0.002243
33	-0.006484	0.004577	-0.000254	-0.003323
34	-0.003706	0.000518	-0.000249	0.000609
35	-0.009648	0.002867	0.007123	-0.001413
36	-0.004327	0.005742	-0.003215	-0.003385
37	-0.005295	6.78E-05	0.003663	0.001122
38	-0.008273	0.003711	0.003194	-0.002309
39	-0.003072	0.002074	-0.001936	-0.000484
40	-0.007482	0.000612	0.005745	-0.000256
41	-0.005611	0.005089	-0.001505	-0.003197
42	-0.005414	0.001414	0.002917	0.000425
43	-0.008508	0.003470	0.004081	-0.001998
44	-0.003318	0.003162	-0.002532	-0.001318
45	-0.006592	-8.43E-05	0.004958	0.000379
46	-0.006280	0.004397	0.000277	-0.002698
47	-0.005014	0.001726	0.001493	-0.000121
48	-0.008089	0.003128	0.004029	-0.001687
Response of				
LUKEPU:				
Period	LOIL	LGDP	LUKEPU	LUSEPU
1	-0.140413	0.032734	0.341206	0.000000
2	-0.089470	0.054249	-0.030964	0.009290
3	-0.137749	0.019756	0.149372	-0.009998
4	0.010678	0.033501	-0.061531	-0.021102
5	0.006333	-0.061758	0.234722	0.067627
6	-0.174791	0.035325	0.104649	-0.036627
7	-0.011461	0.102293	-0.052886	-0.000142
8	-0.155342	-0.045434	0.290711	0.016712
9	0.074601	0.093434	-0.103686	-0.037576
10	-0.117286	-0.125854	0.235324	0.083912
11	-0.133688	0.134955	0.233324	-0.063171
12	-0.008173	-0.003072	0.019748	0.027424
13	-0.079083	0.000777	0.100430	-0.004741
14	-0.033014	0.057223	0.003862	-0.014932

1.5	0.120445	0.024241	0.173651	0.048737
15	-0.120445	-0.034341		
16	-0.065115	0.078930	0.083480	-0.034078
17	-0.006334	-0.032777	0.040011	0.016709
18	-0.089944	0.026129	0.121014	0.005409
19	-0.106053	0.043460	0.108442	-0.010607
20	-0.042780	0.026002	0.082657	0.015362
21	-0.070230	-0.000706	0.103822	-0.004505
22	-0.028986	0.024723	0.024717	0.000540
23	-0.100653	-0.006137	0.177271	0.027051
24	-0.081638	0.057905	0.069355	-0.026240
25	-0.030301	0.011854	0.056213	0.012742
26	-0.092707	0.005360	0.132964	0.003751
27	-0.045717	0.040916	0.058511	-0.003267
28	-0.079344	-0.014750	0.131911	0.024426
29	-0.070652	0.050351	0.061887	-0.022450
30	-0.043589	0.005511	0.080765	0.014174
31	-0.089365	0.018353	0.135783	0.004587
32	-0.059514	0.035568	0.058126	-0.007199
33	-0.063726	0.001221	0.100381	0.017376
34	-0.073000	0.028130	0.097757	-0.008394
35	-0.045708	0.014939	0.073541	0.007549
36	-0.087017	0.013515	0.122221	0.007557
37	-0.067496	0.039598	0.067811	-0.010484
38	-0.053851	0.006786	0.097591	0.014689
39	-0.074868	0.017747	0.104365	-0.001565
40	-0.053839	0.023335	0.066764	0.002450
41	-0.080528	0.009906	0.118767	0.010290
42	-0.065369	0.036427	0.078921	-0.009835
43	-0.053187	0.008801	0.087492	0.011428
44	-0.080330	0.019090	0.107268	0.001424
45	-0.059220	0.026839	0.074150	-0.000108
46	-0.067661	0.008248	0.107664	0.010562
47	-0.067573	0.028225	0.084421	-0.006228
48	-0.058457	0.015643	0.084859	0.007856
Response of				
LUSEPU:				
Period	LOIL	LGDP	LUKEPU	LUSEPU
1	-0.055795	-0.098175	0.206559	0.099961
2	-0.109553	0.087485	0.101699	-0.050822
3	0.010087	0.023563	-0.118372	-0.040825
4	-0.074336	0.041205	0.174915	0.022588
5	-0.120436	0.017556	0.148983	-0.007258
6	0.009091	0.024712	-0.035255	0.021223
7	-0.082722	-0.061721	0.100245	0.014837
8	0.009400	0.073063	-0.001919	-0.036695
9	-0.070893	-0.038139	0.177477	0.045663
	3.3.3075	0.000107	V.2.1111	5.5 25 605

Abdul Holik/ Economics Development Analysis Journal 7 (4) (2018)

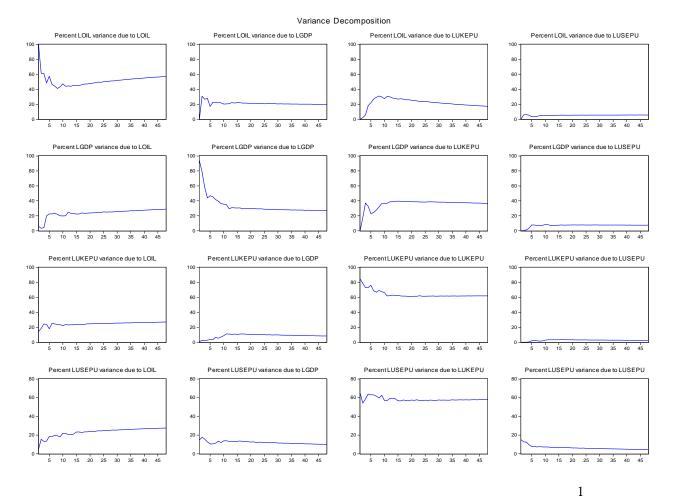
10	-0.127762	0.095536	0.060247	-0.046578
11	-0.012110	0.025895	-0.018633	0.008728
12	-0.047429	-0.041726	0.153771	0.029082
13	-0.017031	0.022621	0.015819	-0.018155
14	-0.064886	-0.018375	0.076929	0.031226
15	-0.124953	0.073724	0.113268	-0.033547
16	0.004309	0.039043	0.006567	-0.007527
17	-0.051328	-0.031953	0.125178	0.029531
18	-0.065789	0.032567	0.023677	-0.015855
19	-0.041927	-0.003586	0.076918	0.026083
20	-0.077146	0.019883	0.111867	-0.013779
21	-0.012035	0.040803	-0.003498	-0.015945
22	-0.084254	-0.008650	0.123976	0.025282
23	-0.074924	0.053102	0.065051	-0.019032
24	-0.011678	-0.009458	0.043324	0.018433
25	-0.061053	-0.003410	0.089231	0.001787
26	-0.047759	0.036549	0.036806	-0.011536
27	-0.071339	0.008613	0.111699	0.016726
28	-0.067022	0.041816	0.065653	-0.018822
29	-0.017675	0.005858	0.024852	0.008460
30	-0.068448	-0.005852	0.111006	0.013613
31	-0.052313	0.032428	0.050047	-0.010657
32	-0.048211	0.005401	0.073953	0.011839
33	-0.070201	0.029364	0.075652	-0.012374
34	-0.033534	0.023138	0.043591	0.001555
35	-0.066176	-0.002259	0.105953	0.014429
36	-0.051738	0.030272	0.043928	-0.011152
37	-0.040183	0.001947	0.063774	0.011752
38	-0.068085	0.019751	0.090617	-0.004337
39	-0.043058	0.027644	0.047276	-0.003646
40	-0.062524	0.005835	0.088214	0.010539
41	-0.055739	0.028239	0.058135	-0.008791
42	-0.036288	0.004615	0.060802	0.009822
43	-0.064615	0.011199	0.088381	0.001634
44	-0.050097	0.028304	0.048920	-0.005994
45	-0.056468	0.010084	0.082387	0.008322
46	-0.057432	0.024466	0.068748	-0.006439
47	-0.039536	0.011335	0.054706	0.005730
48	-0.063592	0.008688	0.086666	0.005183
Cholesky Ordering:				
LOIL LGDP				
LUKEPU LUSEPU				

Abdul Holik/ Economics Development Analysis Journal 7 (4) (2018)

5. Analysis Variance Decomposition

Variance Decomposition of LOIL:					
Period	S.E.	LOIL	LGDP	LUKEPU	LUSEPU
1	0.113717	100.0000	0.000000	0.000000	0.000000
2	0.157967	61.34577	30.67503	2.170894	5.808309
3	0.170500	61.26887	26.79368	5.758368	6.179086
4	0.191855	48.57382	27.86051	18.16540	5.400265
5	0.246521	57.58908	17.13875	21.99402	3.278148
6	0.276347	46.38972	22.50493	27.12286	3.982487
7	0.285750	44.24512	22.68284	29.25172	3.820318
8	0.301651	41.22236	22.67589	31.05995	5.041795
9	0.309868	43.34902	21.84047	29.97887	4.831637
10	0.332784	47.50766	20.25693	27.53970	4.695712
11	0.345839	44.05694	20.52973	30.52199	4.891349
12	0.353154	44.57548	20.72346	29.94120	4.759855
13	0.365911	44.09078	22.38285	28.36339	5.162972
14	0.372417	45.42054	21.61804	27.97136	4.990064
15	0.380918	45.25549	22.35108	26.96030	5.433126
16	0.383914	45.04893	22.13886	27.33352	5.478687
17	0.389213	46.13752	21.64543	26.88625	5.330806
18	0.396575	47.11643	21.57520	25.91642	5.391955
19	0.400179	47.11178	21.46096	26.02972	5.397545
20	0.404584	47.77701	21.31316	25.47740	5.432424
21	0.409065	48.16510	21.35037	24.98421	5.500310
22	0.413174	48.86419	21.20410	24.52463	5.407083
23	0.419036	49.66774	20.99110	23.86323	5.477936
24	0.422368	49.40397	21.06591	24.02058	5.509542
25	0.426877	50.12690	20.66304	23.79260	5.417450
26	0.432819	50.25046	20.91394	23.29448	5.541127
27	0.436438	50.84396	20.75924	22.91634	5.480457
28	0.441492	51.31929	20.73994	22.39537	5.545397
29	0.444015	51.35641	20.75743	22.31906	5.567104
30	0.447883	52.03802	20.48176	21.98405	5.496174
31	0.453484	52.30710	20.58620	21.52749	5.579212
32	0.456423	52.63023	20.53763	21.27332	5.558822
33	0.460501	53.04625	20.46809	20.90299	5.582672
34	0.463920	53.18078	20.47045	20.74430	5.604482
35	0.467709	53.73577	20.29802	20.42079	5.545417
36	0.472123	54.02079	20.31475	20.06210	5.602354
37	0.474671	54.17432	20.29933	19.92083	5.605531
38	0.478663	54.65489	20.15899	19.59736	5.588757
39	0.482794	54.82513	20.22438	19.33250	5.617997
40	0.485967	55.20685	20.12812	19.08123	5.583800
41	0.489689	55.45240	20.10984	18.81290	5.624863
42	0.492448	55.61814	20.08449	18.67221	5.625160

44 0.500292 56.20418 20.01409 18.14887 5.63286 45 0.503106 56.46440 19.95851 17.95876 5.61833 46 0.506738 56.74769 19.91429 17.70585 5.63216 47 0.509758 56.92126 19.90664 17.53799 5.63410 48 0.513132 57.26514 19.81396 17.30949 5.61140 Variance Decomposition of LGDP: LOIL LGDP LUKEPU LUSEP 1 0.023134 5.985483 94.01452 0.000000 0.00000 2 0.031412 3.295282 78.68641 17.62224 0.39606 3 0.039274 4.171779 57.64760 37.20382 0.97680 4 0.055406 20.04469 43.92455 32.59698 3.43378 5 0.066243 22.62664 46.75322 22.87972 7.74041 6 0.071129 23.49640 41.62818 27.69946 7.17595 8 0.0
46 0.506738 56.74769 19.91429 17.70585 5.63216 47 0.509758 56.92126 19.90664 17.53799 5.63410 48 0.513132 57.26514 19.81396 17.30949 5.61140 Variance Decomposition of LGDP: LOIL LGDP LUKEPU LUSEP 1 0.023134 5.985483 94.01452 0.000000 0.00000 2 0.031412 3.295282 78.68641 17.62224 0.39606 3 0.039274 4.171779 57.64760 37.20382 0.97680 4 0.055406 20.04469 43.92455 32.59698 3.43378 5 0.066243 22.62664 46.75322 22.87972 7.74041 6 0.067314 22.57292 45.44337 24.39062 7.59308 7 0.071129 23.49640 41.62818 27.69946 7.17595 8 0.073850 21.88868 39.50379 31.92958 6.67794 9 0.078
47 0.509758 56.92126 19.90664 17.53799 5.63410 48 0.513132 57.26514 19.81396 17.30949 5.61140 Variance Decomposition of LGDP: Period S.E. LOIL LGDP LUKEPU LUSEP 1 0.023134 5.985483 94.01452 0.000000 0.00000 2 0.031412 3.295282 78.68641 17.62224 0.39606 3 0.039274 4.171779 57.64760 37.20382 0.97680 4 0.055406 20.04469 43.92455 32.59698 3.43378 5 0.066243 22.62664 46.75322 22.87972 7.74041 6 0.067314 22.57292 45.44337 24.39062 7.59308 7 0.071129 23.49640 41.62818 27.69946 7.17595 8 0.073850 21.88868 39.50379 31.92958 6.67794 9 0.078758 20.03871 36.32784 36.36698 7.26646
48 0.513132 57.26514 19.81396 17.30949 5.61140 Variance Decomposition of LGDP: LOIL LGDP LUKEPU LUSEP 1 0.023134 5.985483 94.01452 0.000000 0.00000 2 0.031412 3.295282 78.68641 17.62224 0.39606 3 0.039274 4.171779 57.64760 37.20382 0.97680 4 0.055406 20.04469 43.92455 32.59698 3.43378 5 0.066243 22.62664 46.75322 22.87972 7.74041 6 0.067314 22.57292 45.44337 24.39062 7.59308 7 0.071129 23.49640 41.62818 27.69946 7.17595 8 0.073850 21.88868 39.50379 31.92958 6.67794 9 0.078758 20.03871 36.32784 36.36698 7.26646 10 0.080278 19.82329 35.58784 36.35027 8.23860 11 0.081
Variance Decomposition of LGDP: S.E. LOIL LGDP LUKEPU LUSEP 1 0.023134 5.985483 94.01452 0.000000 0.00000 2 0.031412 3.295282 78.68641 17.62224 0.39606 3 0.039274 4.171779 57.64760 37.20382 0.97680 4 0.055406 20.04469 43.92455 32.59698 3.43378 5 0.066243 22.62664 46.75322 22.87972 7.74041 6 0.067314 22.57292 45.44337 24.39062 7.59308 7 0.071129 23.49640 41.62818 27.69946 7.17595 8 0.073850 21.88868 39.50379 31.92958 6.67794 9 0.078758 20.03871 36.32784 36.36698 7.26646 10 0.080278 19.82329 35.58784 36.35027 8.23860 11 0.081042 20.04593 34.99518 36.77991 8.17890
Period S.E. LOIL LGDP LUKEPU LUSEP 1 0.023134 5.985483 94.01452 0.000000 0.00000 2 0.031412 3.295282 78.68641 17.62224 0.39606 3 0.039274 4.171779 57.64760 37.20382 0.97680 4 0.055406 20.04469 43.92455 32.59698 3.43378 5 0.066243 22.62664 46.75322 22.87972 7.74041 6 0.067314 22.57292 45.44337 24.39062 7.59308 7 0.071129 23.49640 41.62818 27.69946 7.17595 8 0.073850 21.88868 39.50379 31.92958 6.67794 9 0.078758 20.03871 36.32784 36.36698 7.26646 10 0.080278 19.82329 35.58784 36.35027 8.23860 11 0.081042 20.04593 34.99518 36.77991 8.17897
1 0.023134 5.985483 94.01452 0.000000 0.00000 2 0.031412 3.295282 78.68641 17.62224 0.39606 3 0.039274 4.171779 57.64760 37.20382 0.97680 4 0.055406 20.04469 43.92455 32.59698 3.43378 5 0.066243 22.62664 46.75322 22.87972 7.74041 6 0.067314 22.57292 45.44337 24.39062 7.59308 7 0.071129 23.49640 41.62818 27.69946 7.17595 8 0.073850 21.88868 39.50379 31.92958 6.67794 9 0.078758 20.03871 36.32784 36.36698 7.26646 10 0.080278 19.82329 35.58784 36.35027 8.23860 11 0.081042 20.04593 34.99518 36.77991 8.17897
2 0.031412 3.295282 78.68641 17.62224 0.39606 3 0.039274 4.171779 57.64760 37.20382 0.97680 4 0.055406 20.04469 43.92455 32.59698 3.43378 5 0.066243 22.62664 46.75322 22.87972 7.74041 6 0.067314 22.57292 45.44337 24.39062 7.59308 7 0.071129 23.49640 41.62818 27.69946 7.17595 8 0.073850 21.88868 39.50379 31.92958 6.67794 9 0.078758 20.03871 36.32784 36.36698 7.26646 10 0.080278 19.82329 35.58784 36.35027 8.23860 11 0.081042 20.04593 34.99518 36.77991 8.17897
3 0.039274 4.171779 57.64760 37.20382 0.97680 4 0.055406 20.04469 43.92455 32.59698 3.43378 5 0.066243 22.62664 46.75322 22.87972 7.74041 6 0.067314 22.57292 45.44337 24.39062 7.59308 7 0.071129 23.49640 41.62818 27.69946 7.17595 8 0.073850 21.88868 39.50379 31.92958 6.67794 9 0.078758 20.03871 36.32784 36.36698 7.26646 10 0.080278 19.82329 35.58784 36.35027 8.23860 11 0.081042 20.04593 34.99518 36.77991 8.17897
4 0.055406 20.04469 43.92455 32.59698 3.43378 5 0.066243 22.62664 46.75322 22.87972 7.74041 6 0.067314 22.57292 45.44337 24.39062 7.59308 7 0.071129 23.49640 41.62818 27.69946 7.17595 8 0.073850 21.88868 39.50379 31.92958 6.67794 9 0.078758 20.03871 36.32784 36.36698 7.26646 10 0.080278 19.82329 35.58784 36.35027 8.23860 11 0.081042 20.04593 34.99518 36.77991 8.17897
5 0.066243 22.62664 46.75322 22.87972 7.74041 6 0.067314 22.57292 45.44337 24.39062 7.59308 7 0.071129 23.49640 41.62818 27.69946 7.17595 8 0.073850 21.88868 39.50379 31.92958 6.67794 9 0.078758 20.03871 36.32784 36.36698 7.26646 10 0.080278 19.82329 35.58784 36.35027 8.23860 11 0.081042 20.04593 34.99518 36.77991 8.17897
6 0.067314 22.57292 45.44337 24.39062 7.59308 7 0.071129 23.49640 41.62818 27.69946 7.17595 8 0.073850 21.88868 39.50379 31.92958 6.67794 9 0.078758 20.03871 36.32784 36.36698 7.26646 10 0.080278 19.82329 35.58784 36.35027 8.23860 11 0.081042 20.04593 34.99518 36.77991 8.17897
7 0.071129 23.49640 41.62818 27.69946 7.17595 8 0.073850 21.88868 39.50379 31.92958 6.67794 9 0.078758 20.03871 36.32784 36.36698 7.26646 10 0.080278 19.82329 35.58784 36.35027 8.23860 11 0.081042 20.04593 34.99518 36.77991 8.17897
8 0.073850 21.88868 39.50379 31.92958 6.67794 9 0.078758 20.03871 36.32784 36.36698 7.26646 10 0.080278 19.82329 35.58784 36.35027 8.23860 11 0.081042 20.04593 34.99518 36.77991 8.17897
9 0.078758 20.03871 36.32784 36.36698 7.26646 10 0.080278 19.82329 35.58784 36.35027 8.23860 11 0.081042 20.04593 34.99518 36.77991 8.17897
10 0.080278 19.82329 35.58784 36.35027 8.23860 11 0.081042 20.04593 34.99518 36.77991 8.17897
11 0.081042 20.04593 34.99518 36.77991 8.17897
12 0.088652 24.95146 29.38595 38.74261 6.91998
13 0.091938 23.22963 30.92743 38.79703 7.04590
14 0.093856 22.85291 30.54217 39.38174 7.22317
15 0.094850 22.45727 30.44479 39.57104 7.52690
16 0.095167 22.33795 30.60091 39.34197 7.71917
17 0.097365 23.87042 29.29210 39.44012 7.39735
18 0.098842 23.35317 29.93591 39.03567 7.67524
19 0.099207 23.51748 29.76134 39.02444 7.69674
20 0.099875 23.83920 29.74138 38.68407 7.73535
21 0.099991 23.79564 29.70306 38.75748 7.74381
22 0.100684 24.25343 29.29604 38.81023 7.64029
23 0.101245 24.36048 29.35703 38.45972 7.82276
24 0.101315 24.38796 29.35610 38.43370 7.82224
25 0.102536 25.25549 28.75528 38.30345 7.68577
26 0.103059 25.03213 28.76304 38.55915 7.64568
27 0.103794 25.12407 28.47394 38.80187 7.60011
28 0.104191 25.19683 28.52122 38.55325 7.72870
29 0.104242 25.25445 28.49655 38.51797 7.73103
30 0.105404 26.10644 27.99589 38.29527 7.60239
31 0.105867 25.95608 28.20318 38.21300 7.62774
32 0.106255 26.02826 28.06645 38.28861 7.61668
33 0.106603 26.22853 28.06777 38.03949 7.66421
34 0.106671 26.31596 28.03453 37.99177 7.65774
35 0.107390 26.77163 27.73134 37.92428 7.57275
36 0.107732 26.76345 27.83980 37.77321 7.62355
37 0.107930 26.90600 27.73775 37.74985 7.60640
38 0.108382 27.26474 27.62418 37.52257 7.58850


39	0.108464	27.30391	27.61913	37.49790	7.579062
40	0.108875	27.57018	27.41394	37.49344	7.522441
41	0.109195	27.67270	27.47047	37.29275	7.564080
42	0.109378	27.82519	27.39534	37.23917	7.540296
43	0.109858	28.18275	27.25661	37.05293	7.507709
44	0.109990	28.20584	27.27354	37.01664	7.503979
45	0.110300	28.40492	27.12075	37.01122	7.463106
46	0.110599	28.57379	27.13219	36.81174	7.482273
47	0.110736	28.70807	27.08930	36.73877	7.463864
48	0.111161	29.01855	26.96175	36.58976	7.429942
Variance Decomposition of LUKEPU:					
Period	S.E.	LOIL	LGDP	LUKEPU	LUSEPU
1	0.370418	14.36924	0.780954	84.84980	0.000000
2	0.386267	18.57938	2.690611	78.67217	0.057838
3	0.437012	24.45065	2.306400	73.14542	0.097526
4	0.443223	23.82816	2.813498	73.03685	0.321494
5	0.509871	18.02132	3.593160	76.38339	2.002135
6	0.551418	25.45594	3.482508	68.90854	2.153008
7	0.563430	24.42343	6.631753	66.88263	2.062187
8	0.654554	23.72889	5.395599	69.28234	1.593169
9	0.674462	23.57218	7.000863	67.61607	1.810887
10	0.739536	22.12155	8.719150	66.36562	2.793674
11	0.766406	23.64029	11.21916	61.85996	3.280592
12	0.774296	23.17212	10.99327	62.49509	3.339524
13	0.789577	23.28708	10.57198	62.92582	3.215122
14	0.792486	23.28998	11.01589	62.46707	3.227065
15	0.822344	23.77463	10.40486	62.47229	3.348224
16	0.833577	23.74843	11.02291	61.80293	3.425730
17	0.835371	23.65227	11.12956	61.76713	3.451037
18	0.849288	24.00501	10.86244	61.78964	3.342915
19	0.863886	24.70768	10.75152	61.29483	3.245970
20	0.869410	24.63684	10.70478	61.42230	3.236076
21	0.878410	24.77375	10.48659	61.56693	3.172727
22	0.879584	24.81630	10.53764	61.48175	3.164306
23	0.903323	24.77064	9.995672	62.14384	3.089851
24	0.911871	25.10993	10.21239	61.56268	3.115000
25	0.914270	25.08817	10.17567	61.61806	3.118096
26	0.928551	25.31922	9.868417	61.78781	3.024556
27	0.932419	25.34998	9.979271	61.67001	3.000741
28	0.945471	25.35916	9.729990	61.92564	2.985207
29	0.951723	25.57819	9.882476	61.53758	3.001758
30	0.956259	25.54389	9.792271	61.66852	2.995319
31	0.970161	25.66557	9.549430	61.87268	2.912327
32	0.974397	25.81594	9.599826	61.69172	2.892517
33	0.981779	25.85048	9.456157	61.81286	2.880506
L	1	1	1		

34	0.989766	25.97892	9.384930	61.79475	2.841396
35	0.993688	25.98588	9.333609	61.85573	2.824786
36	1.005070	26.15024	9.141488	61.94145	2.766822
37	1.010444	26.31901	9.198080	61.73468	2.748234
38	1.016702	26.27655	9.089652	61.89842	2.735380
39	1.024938	26.38954	8.974141	61.94449	2.691830
40	1.028788	26.46627	8.958550	61.90289	2.672288
41	1.038845	26.55720	8.795027	62.01717	2.630609
42	1.044568	26.65857	8.820512	61.91020	2.610723
43	1.049674	26.65662	8.741948	62.00419	2.597243
44	1.058367	26.79660	8.631462	62.01701	2.554932
45	1.062952	26.87634	8.620918	61.96980	2.532941
46	1.070615	26.89239	8.503887	62.09718	2.506545
47	1.076450	26.99568	8.480691	62.04084	2.482791
48	1.081512	27.03569	8.422402	62.07702	2.464879
Variance Decomposition of					
LUSEPU:					
Period	S.E.	LOIL	LGDP	LUKEPU	LUSEPU
1	0.255754	4.759281	14.73511	65.22944	15.27616
2	0.313036	15.42468	17.64637	54.09614	12.83281
3	0.338122	13.30973	15.61060	58.62264	12.45703
4	0.390712	13.58765	12.80325	63.94558	9.663516
5	0.435566	18.57877	10.46457	63.15316	7.803501
6	0.438297	18.39097	10.65246	63.01554	7.941027
7	0.461547	19.79703	11.39455	61.54395	7.264467
8	0.468831	19.22687	13.47185	59.64818	7.653099
9	0.509771	18.19665	11.95464	62.57310	7.275614
10	0.539551	21.85043	13.80660	57.10312	7.239854
11	0.540700	21.80788	13.97737	56.97957	7.235188
12	0.566425	20.57305	13.27922	59.29122	6.856509
13	0.567644	20.57485	13.38110	59.11465	6.929402
14	0.577633	21.13117	13.02346	58.86135	6.984024
15	0.607177	23.35994	13.26123	56.75265	6.626179
16	0.608528	23.26133	13.61404	56.51254	6.612085
17	0.624903	22.73289	13.17137	57.60231	6.493427
18	0.629845	23.46859	13.23285	56.84326	6.455298
19	0.636453	23.41777	12.96268	57.12965	6.489899
20	0.651247	23.76914	12.47363	57.51409	6.243148
21	0.652839	23.68733	12.80350	57.23678	6.272387
22	0.670360	24.04502	12.15965	57.70429	6.091039
23	0.680007	24.58160	12.42689	56.99374	5.997767
24	0.681800	24.48178	12.38084	57.09804	6.039346
25	0.690330	24.66265	12.07920	57.36646	5.891687
26	0.694018	24.87484	12.22853	57.03975	5.856877
27	0.706810	25.00128	11.80475	57.49118	5.702793
28	0.714483	25.34715	11.89510	57.10739	5.650369
28	0.714483	25.34715	11.89510	57.10739	5.650369

Abdul Holik/ Economics Development Analysis Journal 7 (4) (2018)

29	0.715207	25.35689	11.87772	57.11248	5.652919
30	0.727151	25.41682	11.49721	57.58218	5.503794
31	0.731543	25.62391	11.55608	57.36088	5.459130
32	0.736965	25.67620	11.39202	57.52688	5.404899
33	0.744838	26.02455	11.30788	57.34874	5.318838
34	0.747226	26.05990	11.33161	57.32315	5.285334
35	0.757737	26.10466	11.02031	57.69904	5.175983
36	0.761454	26.31209	11.07103	57.46987	5.147019
37	0.765269	26.32614	10.96158	57.59286	5.119418
38	0.773881	26.51745	10.78410	57.68921	5.009246
39	0.777019	26.61078	10.82375	57.59440	4.971071
40	0.784599	26.73417	10.62117	57.75112	4.893536
41	0.789276	26.91699	10.62368	57.61122	4.848118
42	0.792520	26.90673	10.54027	57.72913	4.823870
43	0.800126	27.04973	10.36041	57.85685	4.733007
44	0.803705	27.19790	10.39237	57.71322	4.696511
45	0.809993	27.26325	10.24714	57.85518	4.634429
46	0.815324	27.40408	10.20362	57.81204	4.580259
47	0.818212	27.44447	10.15091	57.85172	4.552890
48	0.825305	27.56848	9.988268	57.96434	4.478913
Cholesky Ordering: LOIL LGDP					
LUKEPU LUSEPU					

Abdul Holik/ Economics Development Analysis Journal 7 (4) (2018)

