Studi Literatur tentang Jenis Koneksi Matematika pada Aljabar Abstrak

Main Article Content

Junarti Junarti
YL. Sukestiyarno
Mulyono Mulyono
Nur Karomah Dwidayati

Abstract

Studi ini dimaksudkan untuk membangun kemampuan koneksi matematika mahasiswa pada aljabar abstrak dengan menggali jenis koneksi matematika dari kajian pustaka. Kajian  ini menelusuri 25 artikel internasional dan 6 artikel nasional sebagai bagian dari literatur penyusunan disertasi melalui hasil download.   Jenis data yang digunakan adalah data sekunder dari  artikel tentang koneksi matematika pada aljabar abstrak universitas, aljabar sekolah menengah maupun materi matematika lain.  Metode pengumpulaan data yakni dengan membaca, mengidentifikasi, dan menganalisis, kemudian mengaktegorikan, mengklasifikasi serta mendeskripsikan.  Hasil penelitian menunjukkan jenis koneksi matematika yang sesuai untuk pemahaman aljabar abstrak pada mahasiswa program studi pendidikan matematika adalah jenis koneksi matematika antar konten. Sedangkan jenis koneksi yang kedua koneksi matematika dengan bidang ilmu lain dan koneksi matematika dalam kehidupan sehari-hari belum begitu diperkukan jika diperuntukkan membantu pemahaman mahasiswa dalam aljabar abstrak.

Article Details

How to Cite
Junarti, J., Sukestiyarno, Y., Mulyono, M., & Dwidayati, N. (2020). Studi Literatur tentang Jenis Koneksi Matematika pada Aljabar Abstrak. PRISMA, Prosiding Seminar Nasional Matematika, 3, 343-352. Retrieved from https://journal.unnes.ac.id/sju/index.php/prisma/article/view/37753
Section
Articles

References

Alvarez, J.A. & White, D. (2018). “Making Mathematical Connections Between Abstract Algebra and Secondary Mathematics Explicit: Implications for Curriculum, Research, and Faculty Professional Development”. dalam Wasserman, N.H. (Ed.), Connecting Abstract Algebra to Secondary Mathematics, for Secondary Mathematics Teachers (pp: 175-188). New York, NY, USA: Springer.
Baldinger, E. Broderick, S. Murray, E. Wasserman, N. & White, D. (2015). Connections between Abstract Algebra and High School Algebra: A Few Connections Worth Exploring. Advance Research Creating Connection (AMS Blogs On Teaching and Learning
Baldinger, E.E. (2018). “Learning Mathematical Practices to Connect Abstract Algebra to High School Algebra” dalam Wasserman, N.H. (Ed.), Connecting Abstract Algebra to Secondary Mathematics, for Secondary Mathematics Teachers (pp: 124-147). New York, NY, USA: Springer.
Bass, H. (2018). “Understanding School Mathematics in Terms of Linear Measure and Discrete Real Additive Groups”, dalam Wasserman, N.H. (Ed.), Connecting Abstract Algebra to Secondary Mathematics, for Secondary Mathematics Teachers (pp: 124-147). New York, NY, USA: Springer.
Christy, D. & Sparks, R. (2015). Abstract Algebra to Secondary School Algebra: Building Bridges. Journal of Mathematics Education at Teachers College, 6(2): 37-42.
Cook, J. P. (2012). A guided reinvention of ring, integral domain, and field. (Doctoral dissertation, University of Oklahoma, Norman, Oklahoma). Available from ProQuest Dissertations and Theses database. (UMI No. 3517320).
Coxford, A. F. 1995. The Case for Connections. Dalam Peggy A. Hourse & Arthur F. Coxford (Eds), 1995 Yearbook, Connecting Mathematics Across The Curriculum (hlm. 312). Reston, VA: The National Council of Theachers of Mathematics, Inc.
Flores, C.D. & García-García, J. (2017). Intra-mathematics and extra-mathematics connections that occur when solving calculus problems in a context: a case study in higher level education. 31(57): 158-180. DOI: http://dx.doi.org/10.1590/1980-4415v31n57a08
Fyfe, E.R. Alibali, M.W. & Nathan, M.J. (2017). The promise and pitfalls of making connections in mathematics. In Galindo, E., & Newton, J., (Eds.). Proceedings of the 39th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. (pp. 717-724). Indianapolis, IN: Hoosier Association of Mathematics Teacher Educators.
García, J. (2018). Mathematical connections and alternative conceptions associated with the derivative and the integral in pre-university students. (Doctoral Thesis).. Autonomous University of Guerrero, Mexico. Available in https://www.researchgate.net/profile/Javier_GarciaGarcia4
García-García, J. & Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing Calculus task. International Journal of Mathematical Education in Science and Technology, 49(2), 227-252. DOI: 10.1080/0020739X.2017.1355994
García, J. (2019). Scenarios for exploring mathematical connections. Sociedad Canaria Isaac Newton de Profesores de Matemática. 100: 129-133. http://www.sinewton.org/numeros. ISSN: 1887-1984.
Jingga, A.A. Mardiyana & Triyanto. (2019). Mathematical connections made by teacher in linear program: an ethnographical study. Journal of Educational and Social Research. 9(2): 25-34. Doi: 10.2478/jesr-2019-0010
Jaijan, W., & Loipha, S. (2012). Making mathematical connections with transformations using open approach. HRD Journal, 3(1: 91-100.
Jaijan, W. & Suttiamporn, W. (2012). Mathematical connections ofstudentsin lesson study and open approach. http://www.journal. rmutsb.ac.th/th/data_news/file/rmutsb-journal-2012-10-pdf-589.pdf.
Kenedi, A.K. Helsa, Y., Ariani, Y., Zainil, M., & Hendri, S. (2019). ,Mathematical Connection Of Elementary School Students to solve Mathematical Problems. Journal on Mathematics Education. 10( 1): 69-80. (diunduh 12 Maret 2019).
Maharani, H. R., Sukestiyarno, S., & Waluya, B. (2017). Creative thinking process based on Wallas model in solving mathematics problem. International Journal on Emerging Mathematics Education, 1(2): 177-184
Mhlolo, M. K., Venkat, H. &Schäfer, M. (2012). The nature and quality of the mathematical connections teachers make. Pythagoras, 33(1). Recuperado de http://dx.doi.org/10.4102/pythagoras.v33i1.22
Murray, E. Baldinger, E. & Wasserman, N., Broderick, S., White, D. (2017). Connecting Advanced and Secondary Mathematics. IUMPST. 1 : 2-10. ISSN 2165-7874. (diunduh 12 April 2019).
Mwakapenda, W. (2008). Understanding connections in the school mathematics curriculum. South African Journal of Education. 28(2):189-202.
NCTM. (2000). Principles and Standards for School Mathematics. Tersedia di www.nctm.org
Ormond, C.A. (2016). Scaffolding the Mathematical “Connections”: ANew Approach to Preparing Teachers for theTeaching of Lower Secondary Algebra. Australian Journal of Teacher Education. 41(6): 122-164.
Ramdani, S. 2012. Pembelajaran matematika dengan Pendekatan Problem posing untuk Meningkatkan Kemampuan Pemecahan Masalah Dan Koneksi Matematis siswa. Universitas Pendidikan Indonesia. repository.upi.edu
Rohendi, D.&Jojon, D. 2013. Connected Mathematics Project (CMP) Model Based on Presentation Media to the Mathematical Connection Ability of Junior High School Student. Journal of Education and Practice: 4(4).
Saminanto & Kartono. 2015. Analysis of Mathematical Connection Ability in Linear Equation with One Variable Based on Connectivity Theory. International Journal of Education and Research. 3(4): 259-270.
Suominen, L. A. 2018. Abstract Algebra and Secondary School Mathematics Connections as Discussed by Mathematicians and Mathematics Educators” dalam Wasserman, N.H. (Ed.), Connecting Abstract Algebra to Secondary Mathematics, for Secondary Mathematics Teachers. New York, NY, USA: Springer.
Suominen, L. A. (2015). Abstract Algebra and Secondary School Mathematics: identifying and classifying mathematical connections. Unpublished PhD thesis, The University of Georgia.
Sumarmo, U. (2002). alternatif pembelajaran matematika dalam menerapkan kurikulum berbasis kompetensi. Makalah pada Seminar Tingkat Nasional FPMIPA UPI. Bandung: Tidak diterbitkan.
Taylor, J.M. & Rowe, B.J. (2012). The “Mozart Effect” and the Mathematical Connection. Jounal of College Reading and Learning, 42(2): 51-66. https://files.eric.ed.gov/fulltext/EJ972860.pdf
Wasserman, N. H. 2016. Abstract algebra for algebra teaching: Influencing school mathematics instruction. Canadian Journal of Science, Mathematics and Technology Education, 1–20. http://doi.org/10.1080/14926156.2015. 1093200. (diunduh 7 Desember 2018).
Wasserman, N. H. (2017) Making Sense of Abstract Algebra: ExploringSecondary Teachers’ Understandings of Inverse Functions in Relation to Its Group Structure,Mathematical Thinking and Learning, 19:3, 181-201, DOI: 10.1080/10986065.2017.1328635. (Diunduh 20 Juni 2019)
Wasserman, N.H. 2018. “Exsploring Advance Mathematics Courses and Content for Secondary Mathematics Teachers” dalam Wasserman, N.H. (Ed.), Connecting Abstract Algebra to Secondary Mathematics, for Secondary Mathematics Teachers. New York, NY, USA: Springer.
Yosopranata , D. Zaenuri. & Mashuri. 2018. Mathematical connection ability on creative problem solving with ethnomathematics nuance learning model. Unnes Journal of Mathematics Education. 7(2): 108-113. .DOI https://doi.org/10.15294/ujme.v7i2.25399
Zbiek, R.M. & Heid, M.K. (2018). “Making Connections from the Secondary Classroom to the Abstract Algebra Course: A Mathematical Activity Approach” dalam Wasserman, N.H. (Ed.), Connecting Abstract Algebra to Secondary Mathematics, for Secondary Mathematics Teachers (pp. 187-209). New York, NY, USA: Springer.
Zengin, Y. 2019. Development of mathematical connection skills in a dynamic learning environment. Education and Information Technologies, 24(3) page: 2175-219 https://doi.org/10.1007/s10639-019-09870-x. (diunduh 20-6-2019)