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Abstrak 
___________________________________________________________________ 

Penelitian ini bertujuan untuk memodelkan data kecelakaan lalu lintas di Kabupaten 

Temanggung dengan model regresi semiparametrik multilevel zero-inflated generalized poisson. 

Regresi semiparametrik multilevel zero-inflated generalized poisson adalah model regresi untuk 

menganalisis data berdistribusi poisson dengan struktur data bertingkat yang mengalami 

overdispersi serta terdapat komponen parametrik dan nonparametrik pada variabel bebasnya. 

Penelitian ini mengunakan variabel banyak kecelakaan sebagai variabel respon, serta variabel 
banyak pelanggaran traffic light, banyak pelanggaran pengendara tidak punya SIM, banyak 

keceakaan karena kendaraan tidak fit, banyak kecelakaan karena jalan rusak sebagai variabel 

bebas. Metode yang digunakan  untuk mengestimasi parameter model yaitu dengan metode 

Maximum Likelihood Ratio (MLE) dengan algoritma Ekspektasi Maksimalisasi (EM). Setelah 

dilakukan estimasi parameter dan uji kesesuaian model deengan Uji Wald, maka didapatkan 

bentuk  model regresi semiparametrik multilevel zero-inflated generalized poisson 

 𝑃(𝑌𝑝𝑞𝑟 = 𝑦𝑝𝑞𝑟) =
exp(−0,9756)

1+exp⁡(−12,4681+22,6673𝑇1𝑝𝑞𝑟+𝑢1(𝑇1𝑝𝑞𝑟−𝑘1)
 dengan AIC model count 144.0032 

dan AIC model zero-inflation −63.0016. 

 

Abstract 
___________________________________________________________________ 

This study aims to model the data of traffic accidents in Temanggung Regency with a multilevel 

zero-inflated generalized poisson semiparametric regression model. Multilevel zero-inflated 
generalized poisson semiparametric regression is a regression model for analyzing poisson 
distribution data with stratified data structures that are overdispersed and there are parametric and 

nonparametric components in the independent variable. This study uses the variable of many 
accidents as the response variable, as well as the variable of many traffic light violations, many 

violations of drivers not having a SIM, many accidents because the vehicle is not fit, many accidents 
due to damaged roads as the independent variable. The method used to estimate the model 
parameters is the Maximum Likelihood Ratio (MLE) method with the Maximization Expectation 

(EM) algorithm. After estimating the parameters and the suitability of the test model with the 
Wald Test, then the model shape is obtained a semiparametric regression multilevel zero inflated 

generaized poison 𝑃(𝑌𝑝𝑞𝑟 = 𝑦𝑝𝑞𝑟) =
𝑒𝑥𝑝(−0,9756)

1+𝑒𝑥𝑝⁡(−12,4681+22,6673𝑇1𝑝𝑞𝑟+𝑢1(𝑇1𝑝𝑞𝑟−𝑘1)
 with AIC count 

model 144.0032 and AIC zero-inflation model -63.0016. 
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INTRODUCTION 

Regression Analysis is a simple method for 

analyzing the functional relationship between 

several variables, namely the response variable 

(response) or commonly also called the 

dependent variable (dependent variable) and the 

independent variable (independent variable). In 

the regression analysis there are three 

approaches to estimating the regression curve, 

namely the parametric regression approach, the 

non-parametric regression approach, and the 

semiparametric regression approach. 

Parametric regression is used if the regression 

curve follows a certain pattern or forms clear 

data patterns such as linear, quadratic, and 

cubic. In nonparametric regression, it is used if 

there are no known parametric components. 

While semiparametric regression is used if a 

regression component contains variables that 

can be solved by parametric regression but there 

are variables that must be solved using non-

parametric regression analysis 

Response variables can be discrete data or 

count data, while the regression model that can 

be used to analyze the data count is Poisson 

regression. 

Poisson regression model is a standard 

model used to analyze the count data. The 

assumption of the Poisson distribution is that 

the mean (mean) must be equal to the variance 

(equidispersion). However, such conditions are 

difficult to fulfill. Often the average value is not 

the same as the value of the variance. Variance 

values greater than the mean are called 

overdispersions. The value of variance that is 

smaller than the average value is called 

underdispersion. 

Overdispersion of the data can occur 

because the proportion of zero values is too 

excessive in the response variable (excess zero). 

To solve the problem another model is needed. 

Models that can be used to solve these problems 

are by utilizing Zero-Inflated regression models, 

such as Zero-Inflated Poisson, Zero-Inflated 

Negative Binomial, Zero Inflated Poisson 

mixed-effect, Zero-Inflated Generalized 

Poisson, and others. 

Multilevel regression is regression with 

data in the form of hierarchical or stratified data. 

In some cases, many hierarchical data are found 

where the data has an excess of zero values. 

Resulting in an overdispersion of the data 

The increase in the number of motorized 

vehicles over time is directly proportional to the 

number of traffic accidents. In this study, the 

authors conducted a study in Temanggung 

Regency which is one of the densest cities that 

naturally experience driving safety problems. 

This study applies Multilevel Zero-Inflated 

Generalized Poisson semiparametric regression 

using traffic accident data in the Temanggung 

Regency area in 2018. The data uses variables 

that are assumed to meet parametric and non-

parametric components. 

This study aims to model the accident data 

in Temanggung Regency with a multilevel zer-

Inflated Generalized Poisson semiparametric 

regression model, and to know the estimation of 

many accidents based on the model. 

Semiparametric regression is a 

combination of parametric regression with non-

parametric regression. This means that there is 

a relationship between the response variable and 

the independent variable that cannot be solved 

by parametric regression analysis alone but 

there must be resolved by non-parametric 

regression. The semiparametric regression 

model can be written as follows: 
𝑌_𝑖 = 𝑥_𝑖⁡𝛽 + 𝑓(𝑡_𝑖⁡) + 𝜀_𝑖; ⁡⁡⁡⁡⁡⁡𝑖 = 1,2,… . , 𝑛⁡⁡⁡⁡⁡⁡⁡⁡(1) 

Y_i is the i variable, x_i is a parametric 

component, f (x_i) is a regression function of 

unknown regression curve shape and ε_i is a 

random error with ε_i ~ N (0, σ^2  ). According 

to Alain (2009: 224), overdispersion means 

variance greater than average. The existence of 

overdispersion can be known through the 

distance or the difference between the deviation 

with the degree of freedom. If the difference 

results in a value greater than one, the model is 

said to be overdispersed. 

Zero-Inflated Generalized Poisson (ZIGP) 

regression is a method for dealing with 

overdispersion with the proportion of zero value 

data being around 65.7% (Famoye and Singh, 

2006). ZIGP model as follows: 

𝑷(𝒀𝒊 = 𝒚𝒊|𝒙𝒊, 𝒛𝒊)

= {
𝝅𝒊 + (𝟏 − 𝝅𝒊)𝒇(𝝁𝒊, 𝝎, 𝒚𝒊), 𝒚𝒊 = 𝟎

(𝟏 − 𝝅𝒊)𝒇(𝝁,𝝎, 𝒚𝒊)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡, 𝒚𝒊 > 𝟎
 

With f (μ,ω,y_i), y_i  = 0,1,2,... is a GP 

regression model with 0 <π_i  <1. In the 

function μ_i  = μ_i  (x_i) and π_i  = π_i  (z_i) 

fulfill the link function as follows (Famoye and 

Singh, 2006) 

𝐥𝐨𝐠(𝝁𝒊) =∑ 𝒙𝒊𝒋𝜷 = 𝒙𝑻𝜷
𝒌

𝒋=𝟏
 

and 

𝒍𝒐𝒈𝒊𝒕⁡(𝝅𝒊) = 𝐥𝐨𝐠(𝝅𝒊[𝟏 − 𝝅𝒊])
−𝟏 =∑ 𝒁𝒊𝒋𝜹

𝒎

𝒋=𝟏
 

The MZIGP model considers a hierarchical 

situation of more than one level. In this study, the 

hierarchical situation consists of two levels where 

𝑦𝑖𝑗𝑘 ⁡(𝑖⁡ = ⁡1,2, . . . , 𝑚; ⁡𝑗⁡ = ⁡1,2, . . . , 𝑛𝑖; ⁡𝑘⁡ =
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⁡1,2, . . . , 𝑛𝑖𝑗) is the response variable with ZIGP 

distribution. The ijk index shows that there are k 

people in the j-th number combination of the i-th 

group. The total number of combinations is 
∑ 𝑛𝑖
𝑚
𝑖=1 = 𝑛 and the total number of individuals 

(observations) is ⁡= ∑ ∑ 𝑛𝑖𝑗
𝑛𝑖
𝑗=1

𝑚
𝑖=1 . A combined 

model for 𝜇 and 𝜙, ie  

𝒍𝒏(𝝁) = 𝒙𝒊
𝑻𝜷 and  𝒍𝒐𝒈(𝝓) = 𝒍𝒐𝒈 (

𝝓

𝟏−𝝓
) = 𝒂𝒊

𝑻𝜶 

When individual responses from people 

belonging to different groups are independent, 
specific correlations to the group and 

combinations are anticipated. This dependency 

can be modeled by considering a suitable 

random effect on linear predictors. As in the 

ZIGP regression model for calculated data, 

𝑙𝑜𝑔(𝜇) and 𝑙𝑜𝑔(𝜙 1 − 𝜙⁄ )allow linear 

dependence on several explanatory variables. 

Thus, the linear predictor of η_ijk can be 

expressed as 

𝑙𝑛(𝜇𝑖𝑗𝑘) = 𝜂𝑖𝑗𝑘 = 𝑥𝑖𝑗𝑘
𝑇 𝛽 + 𝑢𝑖 + 𝑣𝑖𝑗 ⁡      (2) 

and 

𝑙𝑜𝑔𝑖𝑡(𝜔𝑖𝑗𝑘) = 𝜂𝑖𝑗𝑘 = 𝑥𝑖𝑗𝑘
𝑇 𝜏 + 𝑢𝑖 + 𝑣𝑖𝑗        (3) 

or 

𝑃(𝑌𝑖𝑗𝑘 = 𝑦𝑖𝑗𝑘) =
exp⁡(𝑥𝑖𝑗𝑘

𝑇 𝛽+𝜀𝑖)

1+exp⁡(𝑥𝑖𝑗𝑘
𝑇 𝜏+𝜀𝑖)

                 (4) 

 

METHODS 

 The data taken is secondary data that is 

traffic accident data in Temanggung Regency. 

Data was collected at the Temanggung District 

Police Station. The method used in this study is 

the interview method. One method of data 

collection is by interviewing, which is getting 

information by asking questions directly to the 

source. 

In this study the authors interviewed police 

members related to traffic accident data at the 

Temanggung District Police Station. The 

variables observed in this study, according to the 

nature of the Poisson regression which requires 

that there be at least a dependent variable with 

one or more independent variables can be 

specified as follows. 

1. The dependent variable (𝑌) is the number of 

traffic accidents in Temanggung Regency 

2. The independent variable (𝑋) that will be 

used in this research is the number of traffic 

light violations (𝑋1), the number of 

violations motorists do not have a SIM (𝑋2), 

the number of accidents due to vehicles not 

fit (𝑇1), the number of accidents due to 

damaged roads (𝑇2). 

Multilevel data design consists of the 

number of traffic accidents taken from data over 
2 months over 4 days, with monthly data as level 

1 (𝑝). Then the data per week as level 2 (𝑞), and 

data per day as level 3 (𝑟). 

In this research, it is explained how the 

solution to overcome overdispersion by using 
Multilevel Zero-Inflated Generalized Poisson 

semiparametric regression analysis method and 

parameter estimation is done using the 

maximum likelihood (MLE) method. The steps 
of the analysis are as follows:  

1. Input data 

2. Test parametric and non-parametric 

assumptions 

3. Test the assumption of the Poisson 

distribution 

4. Test the assumption of equidispersion 

5. Identifying the overdispersion of response 

data 

6. Estimating the parameter values of the 

Multilevel Zero-Inflated Generalized 

Poisson semiparametric regression model 

with MLE 

7. Forming a Multilevel Zero-Inflated 

Generalized Poisson semiparametric 

regression model 

8. Test the significance of model parameters 

with the Wald test 

9. Test the feasibility of the model with AIC 

 

DISCUSSION 

Presentation of data on many accidents in 

Temanggung Regency can be seen in Figure 1. 

Based on Figure 1 it can be seen that the 

data has an excess of zero value (excess zero). 

The variables in this study use the variable many 

accidents (Y) as the response variable, and the 

independent variable is a lot of traffic light 

violations (X_1), many drivers do not have a 

SIM (X_2), many accidents because the vehicle 

is not fit (T_1), many accidents due to road 
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damaged (T_2). Normality test on independent 

variable data can be seen in Table 1. 

Table 1. Test Results for Independent Variables 

Normality 

Variable Sig. Value 

Traffic Light (𝑋1) 0,056 

No SIM (𝑋2) 0,076 

Vehicle Not Fit (𝑇1) 0,000 

Damaged roads (𝑇2) 0,000 

Based on Table 1, it can be seen that the 

Traffic Light (𝑿𝟏) and No SIM (𝑿𝟐) variables 

have significance values of 𝟎. 𝟎𝟓𝟔 > ⁡𝟎. 𝟎𝟓 and 

𝟎. 𝟎𝟕𝟔 > ⁡𝟎. 𝟎𝟓. Then the variables 𝑿𝟏 and 𝑿𝟐 

come from population data that are normally 

distributed so as a parametric component. While 

the Unfit Vehicle (𝑻𝟏) and Damaged Road (𝑻𝟐) 

variables have a significance value of 𝟎, 𝟎𝟎𝟎⁡ <
𝟎. 𝟎𝟓 and 𝟎, 𝟎𝟎𝟎⁡ < 𝟎. 𝟎𝟓. Then the variables 𝑻𝟏 

and 𝑻𝟐 come from populations not normally 

distributed so as a nonparametric component. 

So the semiparametric regression model used for 

the data is: 

𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝑿𝟏 + 𝜷𝟐𝑿𝟐 + 𝜷𝟑𝑻𝟏
+ 𝒖𝟏(𝑻𝟏 − 𝒌𝟏) + 𝜷𝟒𝑻𝟐
+ 𝒖𝟐(𝑻𝟐 − 𝒌𝟐) + 𝜺𝒊 

 Testing of means and variances can be 

seen in Table 2. 

Table 2. Average Test Results and Variance 

Mean Varians 

0,9231 1.47836538 

Based on Table 2, it is known that the 

Mean value and the Variance value are different. 

Then the variable Y does not meet the 

equidispersion assumption. Then tested whether 

overdispersion or underdispersion. To find out 

the existence of overdispersion or 

underdispersion, there are two ways, first, by 

comparing the average value with the value of 

variance. 

 

If the value of the variance is greater than the 

average, overdispersion occurs. If the value of 

the variance is smaller than the average, 

underdispersion occurs. Based on table 2 it is 

known that the value of variance = 1.47836538> 

average = 0.9231. Then it can be concluded that 

there is an overdispersion of the 𝒀 response 

variable data. The second way is by dividing the 

Pearson chi-square value and residual deviance 

by the degree of freedom if the value is more 

than 1 then overdispersion and if the value is less 

than 1 then underdispersion. By testing using the 

R 3.3.1 program the results obtained residual 

deviance value of 36,823 with degrees of 

freedom (df) 28. Pearson chi square value of 

2989.335 then, 

a) 
𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑑𝑓
=

36.823

28
= 1,315107 

b) 
𝑃𝑒𝑎𝑟𝑠𝑜𝑛⁡𝑐ℎ𝑖⁡𝑠𝑞𝑎𝑢𝑟𝑒

𝑑𝑓
=

2989.335

28
= 106.762 

Based on the results of the division of 

residual deviance values and Pearson chi square 

values can be known to be more than 1. Then it 

can be concluded that the Y response variable 

data has overdispersion. Because of 

overdispersion in Poisson regression and 

multilevel, this research used a model to 

overcome the overdispersion problem, namely 

the Zero-Inflated Generalized Poisson (ZIGP) 

regression model. 

Multilevel zero-inflated genealized poisson 

semiparametric regression model is a model 

used to improve Poisson semiparametric 

regression models with multilevel structured 

data that has overdispersed for response variable 

data due to excess zero. In the traffic accident 

data in Temanggung Regency as level 1, which 

is Month, level 2, which is Sunday, and level 3, 

which is Day. There are 3 months, 10 weeks, 65 

days, so the number of data samples is 65 

samples. 

Based on equations (1) and (4) the shape of 

the zero-inflated generalized poisson 

semiparametric regression model equation can 

be stated as follows: 

 

𝑃(𝑌𝑝𝑞𝑟 = 𝑦𝑝𝑞𝑟) =
𝑒𝑥𝑝(𝛽0 + 𝛽1𝑋1𝑖𝑝𝑞𝑟 + 𝛽2𝑋2𝑖𝑝𝑞𝑟 + 𝛽3𝑇1𝑖𝑝𝑞𝑟 + 𝑢1(𝑇1𝑖𝑝𝑞𝑟 − 𝑘1) + 𝛽4𝑇2𝑖𝑝𝑞𝑟 + 𝑢2(𝑇2𝑖𝑝𝑞𝑟 − 𝑘2))

1 + exp⁡(𝜏0 + 𝜏1𝑋1𝑝𝑞𝑟 + 𝜏2𝑋2𝑝𝑞𝑟 + 𝜏3𝑇1𝑝𝑞𝑟 + 𝑢1(𝑇1𝑖𝑝𝑞𝑟 − 𝑘1) + 𝜏1𝑇2𝑝𝑞𝑟 + 𝑢2(𝑇2𝑖𝑝𝑞𝑟 − 𝑘2))

Information: 

𝑝 : Month (𝑝 = 1, 2, 3) 
𝑞 : Week (𝑞 = 1,… . , 10) 
𝑟 : Day (𝑟 = 1,… . ,65) 

  

  

 

After estimating parameters for the multilevel 

zero-inflated generalized poisson semiparametric 

regression model using the R 3.3.1 program by 

activating the glmmADMB package, the 

estimation results for the count model in Table 3 
are as follows. 
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Table 3. Estimated Multilevel Zero-Inflated 

Generalized Poisson semiparametric regression 

models for the count model (poisson with log 

link) 

             Estimate  Std. 

Error  

z 

value  

Pr(>|z|)   

(Intercept)  -0.9756 0.3214    -3.04    0.0024 

**. 

𝛽1           0.0432      0.0412     1.05    0.2948    

𝛽2            0.0121      0.0442     0.27    0.7851    

𝛽3            0.1308      0.5250     0.25    0.8033    

𝛽3  0.3845      0.2997     1.28    0.1994    

𝜎2 (Month) 1.125e-07 

𝜎2 (Week) 0.0001903 

𝜎2 (Day) 1.123e-07 

 

Based on the estimation results shown in 

Table 3 the count model equation is obtained for 

μ as follows. 
𝒍𝒏(𝝁) = −𝟎, 𝟗𝟕𝟓𝟔 + 𝟎, 𝟎𝟒𝟑𝟐𝑿𝟏𝒊𝒑𝒒𝒓 + 𝟎, 𝟎𝟏𝟐𝟏𝑿𝟐𝒊𝒑𝒒𝒓 +

𝟎, 𝟏𝟑𝟎𝟖𝑻𝟏𝒊𝒑𝒒𝒓 + 𝒖𝟏(𝑻𝟏𝒊𝒑𝒒𝒓 − 𝒌𝟏) + 𝟎, 𝟑𝟖𝟒𝟓⁡𝑻𝟐𝒊𝒑𝒒𝒓 +

𝒖𝟐(𝑻𝟐𝒊𝒑𝒒𝒓 − 𝒌𝟐) + 𝒗𝒑 +𝒘𝒑𝒒                                  (5) 

 

The interpretation of the results of the 

estimated model (5) is as follows: 

a. The constant value is -0.9756, meaning that 

if the free variable is zero then the number of 

accidents is exp⁡ (-0.9756) = 0.376966. This 

is because the number of accidents is 

influenced by independent variable factors 

other than the model. 

b. Koefisien 𝑋1 bernilai 0,0432, artinya setiap 

terjadi pelanggaran karena traffic light The 

coefficient 𝑋1 is 0.0432, meaning that every 

violation occurs because the traffic light 
causes an increase in the expected value of 

the number of accidents, namely exp⁡ 

(0.0432) = 1.044146. 

c. The coefficient 𝑋2 is 0.0121, meaning that 

every violation occurs because the driver 

does not have a SIM causing an increase in 

the expected value of the number of 

accidents that is exp⁡ (0.0121) = 1.012173. 

d. The coefficient 𝑇1 is worth 0.1308, meaning 

that every time there is a lack of fit of the 

driver's vehicle causing an increase in the 

expected value of the number of accidents 

that is exp⁡ (0.1308) = 1.139739. 

e. The coefficient of 𝑇2  is 0.3845, meaning that 

every time there is damage it causes an 

increase in the expected value of the number 

of accidents, namely exp⁡ (0.3845) = 

1.468879. 

f. The 𝑣𝑝 variable is a constant value of random 

effects as the specific value of monthly data 

for p = 1.2.3 with a variance value of 1.125e-

07. 

g. The 𝑤𝑝𝑞 variable is a constant value of 

random effects as the specific value of data 

per week for p = 1,2,3 and q = 1,2, .... 10 with 

a variance value of 0.0001903. 

 

Table 4. Estimated Multilevel Zero-

Inflated Generalized Poisson semiparametric 

regression models for the zero-inflation model 

(binomial with logit link) 

             Estimate  Std. 

Error  

z 

value  

Pr(>|z|)   

(Intercept)  -12.4681      3.9571    -3.15    0.0016 ** 

𝛽1           0.0669      0.4377     0.15    0.8785     

𝛽2            0.0262      0.4691     0.06    0.9555     

𝛽3            22.6673      5.7698     3.93   8.5e-05 

*** 

𝛽4  -0.6691      -0.6691      -0.15    0.8792     

𝜎2 (Bulan) 0.002035 

𝜎2 (Minggu) 0.0007097 

𝜎2 (Hari) 2073 

 

Based on the estimation results shown in 

Table 4 the zero-inflation model equation for 

𝝎⁡is obtained as follows: 

𝑙𝑜𝑔𝑖𝑡(𝜔) = −12,4681 + 0,0669𝑥1𝑝𝑞𝑟 +

0,0262𝑥2𝑝𝑞𝑟 + 22,6673𝑡1𝑝𝑞𝑟 +

(−0,6691𝑡2𝑝𝑞𝑟) + 𝑦𝑝 + 𝑧𝑝𝑞  (6) 

The interpretation of the results of the 

estimation model (6) is as follows: 

a. The constant value is -12.4681, meaning that 

if the free variable is zero then the number of 

accidents is exp⁡ (-12.4681) = 3.84745E-06. 

This is because the number of accidents is 

influenced by independent variable factors 

other than the model. 

b. The coefficient 𝑋1 is 0.0669, meaning that 

every violation occurs because the traffic 

light causes an increase in the risk of no 

accidents ie exp⁡ (0.0669) = 1.069188. 

c. The coefficient 𝑋2 is 0.0262, meaning that 

every violation occurs because the driver 

does not have a SIM causing an increase in 

the risk of no accidents ie exp⁡ (0.0262) = 

1.0265462. 

d. The coefficient 𝑇1 is worth 22.6673, meaning 

that every time there is a lack of fit of the 

driver's vehicle causing an increase in the risk 

of no accidents ie exp⁡ (22,6673) = 

6,986,880,408. 

e. The coefficient of 𝑇2 is -0.6691, meaning that 

every time a road is damaged it causes an 
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increase in the risk of no accidents ie exp 

yaitu (-0.66691) = 0.5121693. 

f. The variable 𝑦𝑝 is a constant value of random 

effects as the specific value of monthly data 

for p = 1.2.3 with a variance value of 

0.002035. 

g.   The 𝑧𝑝𝑞 variable is a constant value of random 

effects as the specific value of data per week for p 

= 1,2,3 and q = 1,2, .... 10 with a variance value 

of 0,0007097. Based on equation (4) and Table 3 

and Table 4, a zero-inflated generalized poisson 

semiparametric regression model is obtained as 
follows: 

𝑃(𝑌𝑝𝑞𝑟 = 𝑦𝑝𝑞𝑟)

=
exp(−0,9756 + 0,0432𝑋1𝑖𝑝𝑞𝑟 + 0,0121𝑋2𝑖𝑝𝑞𝑟 + 0,1308𝑇1𝑖𝑝𝑞𝑟 + 𝑢1(𝑇1𝑖𝑝𝑞𝑟 − 𝑘1) + 0,3845⁡𝑇2𝑖𝑝𝑞𝑟 + 𝑢2(𝑇2𝑖𝑝𝑞𝑟 − 𝑘2))

1 + exp⁡(−12,4681+ 0,0669𝑋1𝑝𝑞𝑟 + 0,0262𝑋2𝑝𝑞𝑟 + 22,6673𝑇1𝑝𝑞𝑟 + 𝑢1(𝑇1𝑖𝑝𝑞𝑟 − 𝑘1) + (−0,6691𝑇2𝑝𝑞𝑟) + 𝑢2(𝑇2𝑖𝑝𝑞𝑟 − 𝑘2))

The interpretation of the results of the 

estimation model (7) is as follows: 
a. The constant for the count model is 

−0.9756, and -12.4681 for the zero-inflation 

model meaning that if the independent 

variable is zero then the chance of an 

accident is worth 
𝑒𝑥𝑝⁡(−0.9756)

(1⁡+⁡𝑒𝑥𝑝⁡(−12.4681)⁡)
⁡⁡=

⁡0.37696455. This is because the number of 

accidents is influenced by independent 

variable factors other than the model. 

b. The coefficient 𝑋1 for the count model has a 

value of 0.0432, and a value of 0.0669 for 

the zero-inflation model, meaning that the 

chance of an accident due to traffic light 

violations is ⁡⁡
𝑒𝑥𝑝⁡(0.0432)

(1⁡+⁡𝑒𝑥𝑝⁡(0.0669))
⁡⁡= ⁡0.504616, 

assuming the other variables are constant. 

c. The coefficient 𝑋2 for the count model has a 

value of 0.0121, and a value of 0.0262 for the 

zero-inflation model, meaning that the 

chance of an accident occurring because the 

driver does not have a SIM is 
𝑒𝑥𝑝⁡(0.0121)

(1⁡+⁡𝑒𝑥𝑝⁡(0.0262))
⁡⁡⁡= ⁡0.499457, assuming the 

other variables are constant. 

d. The coefficient of 𝑇1  for the count model is 

worth 0.1308, and it is worth 22.6673 for the 

zero-inflation model, meaning that the 

chance of an accident occurs due to the 

motor vehicle less fit factor, namely 
𝑒𝑥𝑝⁡(0.1308⁡+⁡𝑢_1⁡(𝑇_1𝑖𝑝𝑞𝑟−𝑘_1))

⁡(1⁡+⁡𝑒𝑥𝑝⁡(22,6673⁡+⁡𝑢_1⁡(𝑇_1𝑖𝑝𝑞𝑟−𝑘_1)))
⁡, assuming 

the other variables are constant. 

e. The coefficient of 𝑇2 for the count model is 

0.3845, and the value of −0.6691 for the 

zero-inflation model, meaning that the 

chance of an accident due to a damaged road 

factor is  
𝑒𝑥𝑝⁡(0.3845⁡+⁡𝑢_2⁡(𝑇_2𝑖𝑝𝑞𝑟−𝑘_2))⁡

⁡(1⁡+⁡𝑒𝑥𝑝⁡(−0.6691)⁡〖+⁡𝑈〗⁡_2⁡(𝑇_2𝑖𝑝𝑞𝑟−𝑘_2)))
, 

assuming the other variables are constant. 

In the equation of the form of a zero-inflaed 

generalized poisson semiparametric regression 

model (7) the estimated parameters of the 

smooth function (u_j) and the optimal knot 

point (k_j) are not searched for because of 

limitations in this study. Semiparametric 

regression is a combination of parametric 

regression and nonparametric regression. The 

smooth function of nonparametric regression 

can be formed with the penalized spline 

approach. In spline regression there are 

unknown parameters and optimal knot points. 

The optimal knot point can be searched by 

looking at the minimum Generalized Cross 

Validation (GCV).  

Furthermore, the significance of the parameters 

𝜷 and 𝝉, the results obtained in Table 5 and 

Table 6. 

Tabel 5 Analisis Uji Wad Count Part 

𝑖 𝛽̂𝑖 SE 𝑊𝑖

= z𝑖
2 

P 
value 

decision 

1 0.0432      0.0412     1.1025 0.2948    𝐻0 
accepted 

2 0.0121      0.0442     0.0729 0.7851    𝐻0 
accepted 

3 0.1308      0.5250     0.0625 0.8033    𝐻0 
accepted 

4 0.3845      0.2997     1.6384 0.1994    𝐻0 
accepted 

 
Table 6 Analysis of the Wald Zero-Iflation Part 

Test 
𝑖 𝜏̂𝑖 SE 𝑊𝑖 = z𝑖

2 P value Decision 

1 0.0669 0.4377 0.0225 0.8785 𝐻0 
diterima 

2 0.0262 0.4691 0.0036 0.9555 𝐻0 
diterima 

3 22.6673 5.7698 15.4449 8.5e-05 
*** 

𝐻0 
ditolak 

4 -0.6691 -0.6691 0.0225 0.8792 𝐻0 
diterima 

 

Based on Table 5 and Table 6 it is known that 

for the count part there are no significant 

variables that influence. Whereas the zero-

inflation part only (𝜏3) ̂ has a significant effect. 

Then the final model of multi-level zero-inflated 
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generalized poisson semiparametric regression 

is 

𝑃(𝑌𝑝𝑞𝑟 = 𝑦𝑝𝑞𝑟)

=
exp(−0,9756)

1 + exp⁡(−12,4681+ 22,6673𝑇1𝑝𝑞𝑟 + 𝑢1(𝑇1𝑝𝑞𝑟 − 𝑘1)
 

 

 

CONCLUSION 

The model of a zero-inflated generalized 

poisson multilevel semiparametric regression 

equation for traffic accident data in 

Temanggung Regency is as follows. 
𝑷(𝒀𝒑𝒒𝒓 = 𝒚𝒑𝒒𝒓)

=
𝐞𝐱𝐩(−𝟎, 𝟗𝟕𝟓𝟔)

𝟏 + 𝐞𝐱𝐩⁡(−𝟏𝟐, 𝟒𝟔𝟖𝟏 + 𝟐𝟐, 𝟔𝟔𝟕𝟑𝑻𝟏𝒑𝒒𝒓 + 𝒖𝟏(𝑻𝟏𝒑𝒒𝒓 − 𝒌𝟏)
 

The variable that has a significant effect on 

accidents is the variable number of accidents 

because the vehicle is not fit. 

Estimates of many accidents in 

Temanggung Regency are based on a multi-level 

zero-inflated generalized poisson 

semiparametric regression model that is if there 

is 1 vehicle that is not fit then the chance of a 

traffic accident is 
𝑃(𝑌𝑝𝑞𝑟 = 𝑦𝑝𝑞𝑟)

=
exp(−0,9756)

1 + exp⁡(−12,4681 + 22,6673(1) + 𝑢1(𝑇1𝑝𝑞𝑟 − 𝑘1))

=
0.376966

26882,67 + exp⁡(𝑢1(𝑇1𝑝𝑞𝑟 − 𝑘1)
 

Based on the results and discussion, it can be 

suggested to the reader that further research is 

needed to model the overdispersion case in 

traffic accident data with the Multilevel Zero-

Inflated Generalized Poisson semiparametric 

regression model and complete the smooth 

function in nonparametric regression with the 

spline approach. Multilevel Zero-Inflated 

Generalized Poisson (MZIGP) semiparametric 

regression model can be tried using other case 

studies, especially on data that experiences the 

occurrence of excess zero. 
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