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Penelitian ini bertujuan untuk memodelkan data kecelakaan lalu lintas di Kabupaten
Temanggung dengan model regresi semiparametrik multilevel zero-inflated generalized poisson.
Regresi semiparametrik multilevel zero-inflated generalized poisson adalah model regresi untuk
menganalisis data berdistribusi poisson dengan struktur data bertingkat yang mengalami
overdispersi serta terdapat komponen parametrik dan nonparametrik pada variabel bebasnya.
Penelitian ini mengunakan variabel banyak kecelakaan sebagai variabel respon, serta variabel
banyak pelanggaran traffic light, banyak pelanggaran pengendara tidak punya SIM, banyak
keceakaan karena kendaraan tidak fit, banyak kecelakaan karena jalan rusak sebagai variabel
bebas. Metode yang digunakan untuk mengestimasi parameter model yaitu dengan metode
Maximum Likelihood Ratio (MLE) dengan algoritma Ekspektasi Maksimalisasi (EM). Setelah
dilakukan estimasi parameter dan uji kesesuaian model deengan Uji Wald, maka didapatkan
bentuk model regresi semiparametrik multilevel zero-inflated generalized poisson

_ _ exp(—0,9756)
P(Ypqr = Ypgr) = T+ oxp(_12,4681+22,6673T1pqr Foz(Tipar—KD) dengan AIC model count 144.0032

dan AIC model zero-inflation —63.0016.

Abstract

This study aims to model the data of traffic accidents in Temanggung Regency with a multilevel
zero-inflated  generalized poisson semiparametric regression model. Multilevel zero-inflated
generalized poisson semiparametric regression is a regression model for analyzing poisson
distribution data with stratified data structures that are overdispersed and there are parametric and
nonparametric components in the independent variable. This study uses the variable of many
accidents as the response variable, as well as the variable of many traffic light violations, many
violations of drivers not having a SIM, many accidents because the vehicle is not fit, many accidents
due to damaged roads as the independent variable. The method used to estimate the model
parameters is the Maximum Likelihood Ratio (MLE) method with the Maximization Expectation
(EM) algorithm. After estimating the parameters and the suitability of the test model with the
Wald Test, then the model shape is obtained a semiparametric regression multilevel zero inflated

exp(—0,9756 .
¢ ) with AIC count
1+exp(—12,4681+22,6673 Ty pgr+uu1 (Tipgr—K1)

model 144.0032 and AIC zero-inflation model -63.0016.
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INTRODUCTION

Regression Analysis is a simple method for
analyzing the functional relationship between
several variables, namely the response variable
(response) or commonly also called the
dependent variable (dependent variable) and the
independent variable (independent variable). In
the regression analysis there are three
approaches to estimating the regression curve,
namely the parametric regression approach, the
non-parametric regression approach, and the
semiparametric regression approach.
Parametric regression is used if the regression
curve follows a certain pattern or forms clear
data patterns such as linear, quadratic, and
cubic. In nonparametric regression, it is used if
there are no known parametric components.
While semiparametric regression is used if a
regression component contains variables that
can be solved by parametric regression but there
are variables that must be solved using non-
parametric regression analysis

Response variables can be discrete data or
count data, while the regression model that can
be used to analyze the data count is Poisson
regression.

Poisson regression model is a standard
model used to analyze the count data. The
assumption of the Poisson distribution is that
the mean (mean) must be equal to the variance
(equidispersion). However, such conditions are
difficult to fulfill. Often the average value is not
the same as the value of the variance. Variance
values greater than the mean are called
overdispersions. The value of variance that is
smaller than the average value is called
underdispersion.

Overdispersion of the data can occur
because the proportion of zero values is too
excessive in the response variable (excess zero).
To solve the problem another model is needed.
Models that can be used to solve these problems
are by utilizing Zero-Inflated regression models,
such as Zero-Inflated Poisson, Zero-Inflated
Negative Binomial, Zero Inflated Poisson
mixed-effect, Zero-Inflated Generalized
Poisson, and others.

Multilevel regression is regression with
data in the form of hierarchical or stratified data.
In some cases, many hierarchical data are found
where the data has an excess of zero values.
Resulting in an overdispersion of the data

The increase in the number of motorized
vehicles over time is directly proportional to the
number of traffic accidents. In this study, the
authors conducted a study in Temanggung
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Regency which is one of the densest cities that
naturally experience driving safety problems.

This study applies Multilevel Zero-Inflated
Generalized Poisson semiparametric regression
using traffic accident data in the Temanggung
Regency area in 2018. The data uses variables
that are assumed to meet parametric and non-
parametric components.

This study aims to model the accident data
in Temanggung Regency with a multilevel zer-
Inflated Generalized Poisson semiparametric
regression model, and to know the estimation of
many accidents based on the model.

Semiparametric regression is a
combination of parametric regression with non-
parametric regression. This means that there is
a relationship between the response variable and
the independent variable that cannot be solved
by parametric regression analysis alone but
there must be resolved by non-parametric
regression. The semiparametric regression
model can be written as follows:
Yi=xiB+f(ti)+ei; i=12..,n (1)

Y_i is the 1 variable, x_i is a parametric
component, f (x_i) is a regression function of
unknown regression curve shape and €_i is a
random error with €_i ~ N (0, 6”2 ). According
to Alain (2009: 224), overdispersion means
variance greater than average. The existence of
overdispersion can be known through the
distance or the difference between the deviation
with the degree of freedom. If the difference
results in a value greater than one, the model is
said to be overdispersed.

Zero-Inflated Generalized Poisson (ZIGP)
regression is a method for dealing with
overdispersion with the proportion of zero value
data being around 65.7% (Famoye and Singh,
2006). ZIGP model as follows:

P(Y; =yilx; z;)
_ {”i + A -m)f(ny, w,y),y; =0
(1—7Ti)f(#»w»}’i) 'yi>0

With f (p,w,y_1), y.i =0,1,2,... is a GP
regression model with 0 <n_i <1. In the
function p_i = p_i (x1)and n_i = i (z_i)
fulfill the link function as follows (Famoye and
Singh, 2006)

k
log(p;) = Z'—1 xiiB = x'B

and

m
Z;:6
j=1

logit (m;) = log(m;[1 —m;]) ™" =

The MZIGP model considers a hierarchical
situation of more than one level. In this study, the
hierarchical situation consists of two levels where
yijk (l = 1,2,...,m; ] = 1,2,...,ni; k =
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1,2,...,ni]-) is the response variable with ZIGP
distribution. The ijk index shows that there are k
people in the j-th number combination of the i-th
group. The total number of combinations is
M. n; =n and the total number of individuals
(observations) is = 7%, Z;}il n;;. A combined
model for u and ¢, ie
In(w) = x7B and log(¢) = log () = ala

When individual responses from people
belonging to different groups are independent,
specific correlations to the group and
combinations are anticipated. This dependency
can be modeled by considering a suitable
random effect on linear predictors. As in the
ZIGP regression model for calculated data,
log(u) and log(¢p/1 — ¢)allow  linear
dependence on several explanatory variables.
Thus, the linear predictor of m_ijk can be
expressed as

ln(#ijk) = Nijk = XiTjkﬁ +u; + v @
and
logit(wijk) = Nijk = XiTjkT +u; + v 3
or

exp(xljBre)

Pk = yiji) = (e

1+exp (xL-Tjkr+£i)

METHODS

The data taken is secondary data that is
traffic accident data in Temanggung Regency.
Data was collected at the Temanggung District
Police Station. The method used in this study is
the interview method. One method of data
collection is by interviewing, which is getting
information by asking questions directly to the
source.

In this study the authors interviewed police
members related to traffic accident data at the
Temanggung District Police Station. The
variables observed in this study, according to the
nature of the Poisson regression which requires
that there be at least a dependent variable with
one or more independent variables can be
specified as follows.

1. The dependent variable (Y) is the number of
traffic accidents in Temanggung Regency

2. The independent variable (X) that will be
used in this research is the number of traffic
light violations (X1), the number of
violations motorists do not have a SIM (X2),
the number of accidents due to vehicles not
fit (T1), the number of accidents due to
damaged roads (T'2).
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Multilevel data design consists of the
number of traffic accidents taken from data over
2 months over 4 days, with monthly data as level
1 (p). Then the data per week as level 2 (q), and
data per day as level 3 (7).

In this research, it is explained how the
solution to overcome overdispersion by using
Multilevel Zero-Inflated Generalized Poisson
semiparametric regression analysis method and
parameter estimation is done using the
maximum likelihood (MLE) method. The steps
of the analysis are as follows:

1. Input data

2. Test parametric and non-parametric
assumptions

3. Test the assumption of the Poisson
distribution

4. Test the assumption of equidispersion

5. Identifying the overdispersion of response
data

6. Estimating the parameter values of the
Multilevel Zero-Inflated Generalized
Poisson semiparametric regression model
with MLE

7. Forming a  Multilevel
Generalized Poisson
regression model

8. Test the significance of model parameters
with the Wald test

9. Test the feasibility of the model with AIC

Zero-Inflated
semiparametric

DISCUSSION

Presentation of data on many accidents in
Temanggung Regency can be seen in Figure 1.

Data on Traffic Accidents in Temanggung Regency 1
September - 4 November 2018

40
30 -
20 -
10 -

0 1 2 3 4 5

Based on Figure 1 it can be seen that the
data has an excess of zero value (excess zero).
The variables in this study use the variable many
accidents (Y) as the response variable, and the
independent variable is a lot of traffic light
violations (X_1), many drivers do not have a
SIM (X_2), many accidents because the vehicle
is not fit (T_1), many accidents due to road
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damaged (T_2). Normality test on independent
variable data can be seen in Table 1.

Table 1. Test Results for Independent Variables

Normality
Variable Sig. Value
Traffic Light (X1) 0,056
No SIM (X2) 0,076
Vehicle Not Fit (T'1) 0,000
Damaged roads (T2) 0,000

Based on Table 1, it can be seen that the
Traffic Light (X1) and No SIM (X2) variables
have significance values of 0.056 > 0.05 and
0.076 > 0.05. Then the variables X1 and X2
come from population data that are normally
distributed so as a parametric component. While
the Unfit Vehicle (T'1) and Damaged Road (T2)
variables have a significance value of 0,000 <
0.05and 0,000 < 0.05. Then the variables T1
and T2 come from populations not normally
distributed so as a nonparametric component.
So the semiparametric regression model used for
the data is:

Yi=Bo+ B1X1 + B2X; + B3T
+uy(Ty — k) + B4T,
+uy(T, —ky) + &

Testing of means and variances can be
seen in Table 2.

Table 2. Average Test Results and Variance

Mean Varians

0,9231 1.47836538

Based on Table 2, it is known that the
Mean value and the Variance value are different.
Then the variable Y does not meet the
equidispersion assumption. Then tested whether
overdispersion or underdispersion. To find out
the  existence of  overdispersion  or
underdispersion, there are two ways, first, by
comparing the average value with the value of
variance.

If the value of the variance is greater than the
average, overdispersion occurs. If the value of

the variance is smaller than the average,
underdispersion occurs. Based on table 2 it is
known that the value of variance = 1.47836538>
average = 0.9231. Then it can be concluded that
there is an overdispersion of the Y response
variable data. The second way is by dividing the
Pearson chi-square value and residual deviance
by the degree of freedom if the value is more
than 1 then overdispersion and if the value is less
than 1 then underdispersion. By testing using the
R 3.3.1 program the results obtained residual
deviance value of 36,823 with degrees of
freedom (df) 28. Pearson chi square value of
2989.335 then,

a) DevianceResidual — 36.823 =1,315107
df 28

b) Pearson chi sqaure — 2989.335 =106.762
ar 28

Based on the results of the division of
residual deviance values and Pearson chi square
values can be known to be more than 1. Then it
can be concluded that the Y response variable

data has overdispersion. Because of
overdispersion in Poisson regression and
multilevel, this research used a model to

overcome the overdispersion problem, namely
the Zero-Inflated Generalized Poisson (ZIGP)
regression model.

Multilevel zero-inflated genealized poisson
semiparametric regression model is a model
used to improve Poisson semiparametric
regression models with multilevel structured
data that has overdispersed for response variable
data due to excess zero. In the traffic accident
data in Temanggung Regency as level 1, which
is Month, level 2, which is Sunday, and level 3,
which is Day. There are 3 months, 10 weeks, 65
days, so the number of data samples is 65
samples.

Based on equations (1) and (4) the shape of
the  zero-inflated  generalized  poisson
semiparametric regression model equation can
be stated as follows:

exp(ﬁo + .81X1ipqr + ﬁZXZipqr + ﬁ3T1ipqr +u (Tlipqr - kl) + ,B4T2ipqr + U, (Tzipqr - kz))

P(qur = ypqr) =

Information:

p :Month (p = 1, 2,3)
q :Week (¢ =1, ....,10)
r :Day (r =1, ....,65)

29

1+ EXP(TO + Tlxlpqr + T2X2pqr + T3T1pqr +uy (Tlipqr - kl) + TITqur +up (Tzipqr - kz))

After estimating parameters for the multilevel
zero-inflated generalized poisson semiparametric
regression model using the R 3.3.1 program by
activating the glmmADMB package, the
estimation results for the count model in Table 3
are as follows.
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Table 3. Estimated Multilevel Zero-Inflated
Generalized Poisson semiparametric regression
models for the count model (poisson with log
link)

for p = 1.2.3 with a variance value of 1.125e-
07.

g. The w,, variable is a constant value of
random effects as the specific value of data

Estimate %td' z ! Pr(>|zl) perweekforp=1,2,3andq=1,2,.... 10 with
rror  value .
1 £0.0001903.
(Intercept) 09756 03214 -3.04 0.0024 a vanance value 0
*%
B 0.0432 00412 105 0 2'9 48 Table 4. Estimated Multilevel Zero-
[31 0'01 21 0'0 442 0'27 0.7851 Inflated Generalized Poisson semiparametric
[32 0'1 308 0' 5250 0'2 5 0' 8033 regression models for the zero-inflation model
5 0.3845 02997 128 0.1994 (binomial with logit link)
2 (Month) 1.125¢-07 Estimate Std. Z Pr(>1zl)
) Error value
2 0.0001903
gz g:e)k) L 1236.07 (Intercept)  -12.4681 3.9571 -3.15 0.0016 **
Y : B 0.0669 0.4377 0.15 0.8785
Based on the estimation results shown in Pz (2)202253 (5);12321; ggg g-gss()ss
Table 3 the count model equation is obtained for Bs ’ ‘ ’ *;C*e-
u as follows.
In(yx) = —0,9756 + 0,0432X, gy + 0, 0121X 5y + [?42 -0.6691  -0.6691 -0.15 0.8792
0,1308T 1,4, + Uy (T1ipgr — k1) + 0,3845 Ty, + ‘72 (B‘%Ian) 0.002035
s (Taipar — k2) + 0y + Wi (5) o (Mlnggu) 0.0007097
o? (Hari) 2073

The interpretation of the results of the
estimated model (5) is as follows:

a. The constant value is -0.9756, meaning that
if the free variable is zero then the number of
accidents is expi®i (-0.9756) = 0.376966. This
is because the number of accidents is
influenced by independent variable factors
other than the model.

b. Koefisien X; bernilai 0,0432, artinya setiap
terjadi pelanggaran karena traffic light The
coefficient X; is 0.0432, meaning that every
violation occurs because the traffic light
causes an increase in the expected value of

(0.0432) = 1.044146.

c. The coefficient X, is 0.0121, meaning that
every violation occurs because the driver
does not have a SIM causing an increase in
the expected value of the number of
accidents that is expi®i (0.0121) = 1.012173.

d. The coefficient T; is worth 0.1308, meaning
that every time there is a lack of fit of the
driver's vehicle causing an increase in the
expected value of the number of accidents

e. The coefficient of T, is 0.3845, meaning that
every time there is damage it causes an
increase in the expected value of the number
of accidents, namely expi®i (0.3845) =
1.468879.

f. The v, variable is a constant value of random

effects as the specific value of monthly data
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Based on the estimation results shown in
Table 4 the zero-inflation model equation for
w is obtained as follows:
logit(w) = —12,4681 + 0,0669x1 4, +
0,0262x5p4r + 22,6673t pqr +
(=0,6691t5,4,) + ¥y + Zpq (6)

The interpretation of the results of the

estimation model (6) is as follows:

a. The constant value is -12.4681, meaning that
if the free variable is zero then the number of
accidents is expii (-12.4681) = 3.84745E-06.
This is because the number of accidents is
influenced by independent variable factors
other than the model.

b. The coefficient X; is 0.0669, meaning that
every violation occurs because the traffic
light causes an increase in the risk of no
accidents ie expi®i (0.0669) = 1.069188.

c. The coefficient X, is 0.0262, meaning that
every violation occurs because the driver
does not have a SIM causing an increase in

1.0265462.

d. The coefficient T; is worth 22.6673, meaning
that every time there is a lack of fit of the
driver's vehicle causing an increase in the risk
of no accidents ie expi®l (22,6673) =
6,986,880,408.

e. The coefficient of T, is -0.6691, meaning that

every time a road is damaged it causes an
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increase in the risk of no accidents ie exp
yaitu (-0.66691) = 0.5121693.

f. The variable y, is a constant value of random
effects as the specific value of monthly data
for p = 1.2.3 with a variance value of
0.002035.

P(qur = ypqr)

exp(—0,9756 + 0,0432X, gy + 0,0121X 50, + 0,1308Ty 0y + 3 (Tyipgr —

g. The z,, variable is a constant value of random
effects as the specific value of data per week for p
=1,2,3and q = 1,2, .... 10 with a variance value
of 0,0007097. Based on equation (4) and Table 3
and Table 4, a zero-inflated generalized poisson
semiparametric regression model is obtained as

follows:

kl) +0,3845 Tzipqr + uz(TZipqr - kz))

T 1+ exp(—12,4681 + 0,0669X, 4, + 0,0262X gy + 22,6673 T1pgr + s (Tripgr — k1) + (=0,6691T5pqr) + 1y (Taipgr — k2))

The interpretation of the results of the
estimation model (7) is as follows:

a. The constant for the count model is
—0.9756, and -12.4681 for the zero-inflation
model meaning that if the independent
variable is zero then the chance of an
exp (—0.9756)

(1+exp (—12.4681))
0.37696455. This is because the number of
accidents is influenced by independent
variable factors other than the model.

b. The coefficient X; for the count model has a
value of 0.0432, and a value of 0.0669 for
the zero-inflation model, meaning that the
chance of an accident due to traffic light

v (00432  _ (504616,
(1 + exp (0.0669))

assuming the other variables are constant.

c. The coefficient X, for the count model has a
value 0of 0.0121, and a value of 0.0262 for the
zero-inflation model, meaning that the
chance of an accident occurring because the
driver does mnot have a SIM is

e 0012l) - 0.499457, assuming the
(1 + exp (0.0262))

other variables are constant.

d. The coefficient of T; for the count model is
worth 0.1308, and it is worth 22.6673 for the
zero-inflation model, meaning that the
chance of an accident occurs due to the
motor vehicle less fit factor, namely

exp (0.1308 + u_1 (T_lipqr—k_1))
(1 + exp (22,6673 + u_1 (T_1ipqr—k_1))) ’
the other variables are constant.

e. The coefficient of T, for the count model is
0.3845, and the value of —0.6691 for the
zero-inflation model, meaning that the
chance of an accident due to a damaged road
factor is

exp (0.3845 + u_2 (T_2ipqr—k_2))
(1 +exp (-0.6691) [+ U] _2(T_2ipqr—k_2)))
assuming the other variables are constant.
In the equation of the form of a zero-inflaed
generalized poisson semiparametric regression

accident is worth

violations 1is

assuming

model (7) the estimated parameters of the
smooth function (u_j) and the optimal knot
point (k_j) are not searched for because of
limitations in this study. Semiparametric
regression is a combination of parametric
regression and nonparametric regression. The
smooth function of nonparametric regression
can be formed with the penalized spline
approach. In spline regression there are
unknown parameters and optimal knot points.
The optimal knot point can be searched by
looking at the minimum Generalized Cross
Validation (GCV).

Furthermore, the significance of the parameters
B and t, the results obtained in Table 5 and
Table 6.

Tabel 5 Analisis Uji Wad Count Part

i B; SE w; P decision
=z? value

1 0.0432 0.0412 1.1025 0.2948 H,
accepted

2 0.0121 0.0442 0.0729 0.7851 H,
accepted

3 0.1308 0.5250 0.0625 0.8033 H,
accepted

4 0.3845 0.2997 1.6384 0.1994 H,
accepted

Table 6 Analysis of the Wald Zero-Iflation Part

Test

i 1 SE W, =z* Pvalue Decision

1 0.0669 0.4377 0.0225 0.8785 H,
diterima

2 0.0262 0.4691 0.0036 0.9555 H,
diterima

3 22.6673 5.7698 15.4449 8.5¢-05 H,
i ditolak

4 -0.6691 -0.6691 0.0225 0.8792  H,
diterima

Based on Table 5 and Table 6 it is known that
for the count part there are no significant
variables that influence. Whereas the zero-
inflation part only (t3) " has a significant effect.
Then the final model of multi-level zero-inflated
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generalized poisson semiparametric regression
is

P(qur = ypqr)

_ exp(—0,9756)

T 1+ exp(—12,4681 + 22,6673Ty gy + s (Trpgr — k1)

CONCLUSION

The model of a zero-inflated generalized
poisson multilevel semiparametric regression

equation for traffic accident data in
Temanggung Regency is as follows.
P(qur = ypqr)

_ exp(—0,9756)
" 1+ exp(—12,4681 + 22,6673T g, + Uy (T1pgr — Kq)

The variable that has a significant effect on
accidents is the variable number of accidents
because the vehicle is not fit.

Estimates of many accidents in
Temanggung Regency are based on a multi-level
zero-inflated generalized poisson
semiparametric regression model that is if there
is 1 vehicle that is not fit then the chance of a
traffic accident is
P(Ypqr = Ypqr)

exp(—0,9756)

T T+ exp(—12,4681 + 22,6673(1) + uy (Trpgr — k1))
0.376966

~ 26882,67 + exp(ty (Topgr — k1)

Based on the results and discussion, it can be
suggested to the reader that further research is
needed to model the overdispersion case in
traffic accident data with the Multilevel Zero-
Inflated Generalized Poisson semiparametric
regression model and complete the smooth
function in nonparametric regression with the
spline approach. Multilevel Zero-Inflated
Generalized Poisson (MZIGP) semiparametric
regression model can be tried using other case
studies, especially on data that experiences the
occurrence of excess zero.
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