PERBANDINGAN AKURASI MODEL ARCH DAN GARCH PADA PERAMALAN HARGA SAHAM BERBANTUAN MATLAB

  • Sunarti Sunarti Universitas Negeri Semarang
  • Scolastika Mariani Universitas Negeri Semarang
  • Sugiman Sugiman Universitas Negeri Semarang
Keywords: Forecasting; ARCH; GARCH; MATLAB

Abstract

This article aims to get model data stock Unilever Indonesia Tbk. use the model ARCH and GARCH as well as comparing forecasting accuracy of the result of the next five days ahead model ARCH and GARCH on the stock Unilever Indonesia Tbk. use MATLAB. The methods used are design application forecasting uses GUI MATLAB, next model ARIMA Box-Jenkins, identification ARCH effect, forecasting use the model ARCH and GARCH, and compares the results second forecasting model that is based on the value of RMSE. On residual ARIMA best namely ARIMA(1,1,1) detected the effects ARCH so that data can modeled ARCH and GARCH. Model ARCH and GARCH best respectively namely ARCH(3) and GARCH(1,1). Based on value RMSE be seen that model best for forecasting the next five days ahead of data Unilever Indonesia Tbk. produced bymodels GARCH(1,1) because it has value RMSE smallest with equation conditional mean and conditional variance

References

Bollerslev. 1986. Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31:307-327.
Desvina, A. P. & S. Marlinda. 2013. Peramalan Kurs Transaksi Bank Indonesia Terhadap Mata Uang Dollar Amerika (USD) dengan Menggunakan Model ARCH/GARCH. Jurnal Sains, Teknologi dan Industri, Vol. 11. No. 1.
Eliyawati, W. Y., R. R. Hidayat, & D. F. Azizah. 2014. Penerapan Model GARCH (Generalized Autoregressive Conditional Heteroscedasticity) Untuk Menguji Pasar Modal Efisien Di Indonesia. Jurnal Administrasi Bisnis (JAB), Vol. 7 No. 2.
Enders, W. 2007. Applied Econometric Time Series. Iowa, United States: John Willey & Sons, Inc.
Engle, R.F. 1982. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Journal of Econometrica, Vol. 4 No. 4:987-1007.
Engle, R.F. 2001. GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics. Journal of Econometrics Perspectives, 4:157-168.
Juanda, B. & Junaidi. 2012. Ekonometrika Deret Waktu. Bogor: IPB Press.
Nastiti, K. L. A. & A. Suharsono. 2012. Analisis Volatilitas Saham Perusahaan Go Public dengan Metode ARCH-GARCH. Jurnal Sains dan Seni ITS, Vol. 1 No. 1.
Nuraeni, I., T. S. Yanti, & N. Hajarisman. 2015. Pemodelan Autoregressive Conditional Heteroscedasticity dan Generalized Autoregressive Conditional Heteroscedasticity untuk Meramalkan Inflasi Bulanan Indonesia. Prosiding Penelitian SpeSia 2015. Bandung: Universitas Islam Bandung.
Peng, J. Y. & J. A. D. Aston. 2011. The State Space Models Toolbox For MATLAB. Journal of Statitical Software, 41(6):1-26.
Santoso, T. 2011. Aplikasi Model GARCH pada Data Inflasi Bahan Makanan Indonesia. Jurnal Aset, Vol. 13 No. 1: 65-76.
Widarjono, A. 2002. Aplikasi Model ARCH Kasus Tingkat Inflasi Di Indonesia. Jurnal Ekonomi Pembangunan, hal:71-82.
Published
2017-02-27
Section
Articles