ANALISIS KESTABILAN TITIK KESETIMBANGAN MODEL MATEMATIKA PROSES TRANSMISI VIRUS DENGUE DI DALAM TUBUH MANUSIA DENGAN TERAPI OBAT HERBAL

  • Intan Juliah Universitas Negeri Semarang
  • Supriyono Supriyono Universitas Negeri Semarang
Keywords: Dengue Viruses; T Cell; Nedicinal Plants; Equilibrium Point; Stable

Abstract

Dengue fever is an infectious diseese caused by the dengue virus. Dengue virus in to the human body through the intermediary of A. Aegypti mosquito bites. In the human body, the virus uses the cell as a medium to poliferate and survive. The presence of viruses in the human body activates the immune respone is T-cell to inhibit the breeding of dengue virus takes too medicinal plants. In this article, the transmission of dengue virus in the human body modeled mathematically, the next will be determined the stability of the equilibrium point of the model. Result of analysis showed that the stability of the equilibrium point of dengue virus depends on the basic reproduction ratio (R0). If R0 < 1 then the equlibrium point is virus free local asymptotically stable, whereas if R0 > 1 then the equilibrium point is endemic will be asymptotically stable local

References

Candra, A. 2010. Demam Berdarah Dengue: Epidemilogi, Pathogenesis, dan Faktor Risiko Penularan. Aspirator. Vol. 2. No. 2: 110 – 119.
Driessche, P.V.D. &Watmough, J. 2002. Reproduction Number and Subtreshold Endemic Equilibria for Compartmental of Disease Transmission. Mathematical Biosciences. 180: 29 – 48.
Edelstein-Keshet, L. 1988. Mathematical Models in Biology. New York: Random House.
Hardiningsih, A.Y. &Wardhani, L.P. 2010. Kajian Model Epidemik SIR Deterministik dan Stokastik padaWaktu Diskrit. Surabaya: Jurusan Matematika FMIPA Institusi Teknologi Sepuluh Nopember.
Idrees, S & Ashfaq, U.A. 2012. A Brief Review on Dengue Molecular Virology, Diagnosis, Treatment and Prevalence in Pakistan. Genetic Vaccines and Therapy. 10(6): 1 – 10.
Kementerian Kesehatan RI. 2010. Buletin Jakarta Epidemilogi: Demam Berdarah Dengue, Volume 2. Jakarta: Pusat Data dan Surveilans Epidemiologi.
Nowak, M.A & May, R. M. 2000. Virus Dynamics. New York: Oxford University Press, Inc.
Nuraini, N., Soewono, E., & Sidarto, K.A. 2007. A Mathematical Model of Dengue Internal Transmission Process. J. Indones. Math. Soc. (MIHMI). 13(1): 123 - 132.
Wodarz, D. 2007. Killer Cell Dynamics, Mathematical and Computational Approaches to Immunology. New York: Springer - Verlag.
World Health Organization (WHO). 2009. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control – New Edition. Switzerland: Avenue Appia
Published
2017-02-27
Section
Articles