HYPER-PARABOLOIDA DALAM RUANG EUCLID BERDIMENSI-N

  • Muhammad Syifaur Rahmat Universitas Negeri Semarang
  • Suhito Suhito Universitas Negeri Semarang
  • Hery Sutarto Universitas Negeri Semarang
Keywords: Hyper-paraboloid; tangent plane; polar plane

Abstract

One study in geometry is parabolic and paraboloid. Parabola is the locus of points equidistant from a given point and line. Expansion paraboloida on space n> 3 can be done by working through its analytical properties. Issues raised is how to find and formulate general equation of hyper-paraboloid, hyper-paraboloid tangent plane, and the polar plane of hyper-paraboloid. The purpose of this research is to formulate a general equation-paraboloida hyper, hyper-paraboloida tangent plane, and the polar plane of hyper-paraboloid. The method used is literature. In this study, the authors limit the issues discussed in the hyper-paraboloid centered at O and O’ with a symmetry axis parallel to the coordinate axes as well as the focal point lies on the axis symmetry. Results of this research is the general equation of hyper-paraboloid, hyper- paraboloid tangent plane, and the polar plane of hyper-paraboloid

References

Anton, H. 1987. Aljabar Linear Elementer (5π‘‘β„Žπ‘’ ed). Translated by Silaban, P & I.N. Susila. Jakarta: Erlangga.
Bartle, R.G. & D.R Sherbert. 2000. Introduction to Real Analysis (3π‘‘β„Žπ‘’ ed). New York: John Wiley & Sons, Inc.
Guven, B. & T. Kosa. 2008. The Effect of Dynamic Geometry Software on Student Mathematics Teacher’s Spatial Visualization Skills. The Turkish Online Journal of Educational Technology, 7(4): 100-107.
Henle, M. 1969. Modern Geometries The Analytic Approach. New York: John Wiley & Sons, Inc.
In’am, A. 2003. Pengantar Geometri. UMM Pers: Malang.
Kletenik, D., N. Vefimov, N., & O Soroka. 2002. Problems in Analytic Geometry. Moscow: The Minerva Group, Inc.
Kurnianto, Y. S. 2003. Geometri Euclide 𝑅𝑛.Skripsi. Yogyakarta: FMIPA Universitas Gajah Mada.
Mamona D. J. & M. Down. 2005. The Identity of Problem Solving. Journal of Mathematical Behaviour, 24: 385-401.
Moeharti, H.W. 1986. Materi Pokok Sistem- Sistem Geometri. Jakarta: Universitas Terbuka.
Saragih, S. 2012. Application of Generative Learning in Cooperative Settings TPS on Learning Areas and Space Analitic Goemetry. Jurnal Pendidikan Matematika PARADIKMA, 6(1): 27-48.
Susanto. 2012. Geometri Analitik Dasar. Jember: FKIP Universitas Jember.
Tsukerman, E. On Polygons Admitting a Simson Line as Discrete Analogs of Parabolas. Forum Geometricorum, 13: 197-208.
Veronica, R. B. 2011. Aljabar Linear Elementer 2. Semarang: UNNES.
Published
2017-02-27
Section
Articles