ESTIMASI MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS) PADA INDEKS HARGA SAHAM GABUNGAN (IHSG)

  • Elisa Desi Asriani Universitas Negeri Semarang
  • Sugiman Sugiman Universitas Negeri Semarang
  • Putriaji Hendikawati Universitas Negeri Semarang
Keywords: Estimation; CSPI; MARS; GCV

Abstract

The purpose of this study is to know: (1) a estimation best MARS on CSPI with criteria GCV; (2) importance predictors variables against the model best obtained. Variabels affecting Composite Stock Price Index (CSPI) are inflation, interest rate, exchange rate the Rupiah againts the u.s.dollar, Dow Jones index, Nikkei 225 index, and Hang Seng index. MARS model is derived by combination of BF, MI, and MO through trial and error. MARS method on CSPI because nonparametric and high dimention is data has variabels predictors from 3 to 20 and data sampel from 50 to 1000. The analysis MARS method on CSPI with do testing parameters of regression nonparametric model, standaritation, and The results estimation MARS best on CSPI is BF=18, MI=1, and MO=1, GCV minimum is 0,05640. Predictors variables that were significans are inflation; exchange rate the rupiah againts the US$; Dow Jones index; interest rate; and Nikkei 225 index with contributions of importance are 100%; 86,54114%; 84,31259%; 38,18755%; and 32,75410%.

References

Astuti, R., E.P. Aprianti, & H Susanta. 2013. Analisis Pengaruh Tingkat Bunga (SBI), Nilai Tukar (Kurs) Rupiah, Inflasi, dan Indeks Internasional terhadap IHSG (Studi pada IHSG di BEI Periode 2008-2012). Diponegoro Journal of Social and Politic of Science, Semarang: Universitas Diponegoro.
Dewi, S. R. 2012. Pemodelan Indeks Harga Saham di Indonesia dan Dunia dengan Model Univariate dan Multivariate Time Series. Jurnal Statistika.
Draper, N. R. & H. Smith. 1992. Analisis Regresi Terapan, Terjemahan Bambang Sumantri. Jakarta: Gramedia.
Eubank, R. L. 1988. Spline Smoothing and Nonparametric Regression. New York: Marcel Deker.
Friedman, J. H. 1991. Multivariate Adaptive Regression Splines. The Annals of Statistics. Vol. 19, No. 1 (Mar., 1991), pp. 1 – 67. Institute of Mathematical Statistics.
Hardle, W. 1990. Applied Nonparametric Regression. Cambridge University.
Kishartini. 2014. Multivariate Adaptive Regression Splines (MARS) untuk Klasifikasi Status Kerja di Kabupaten Demak. Skripsi. Semarang: FSM Universitas Diponegoro.
Otok, B. W. 2010. Pendekatan Multivariate Adaptive Regression Spline (MARS) pada Pengelompokan Zona Musim Suatu Wilayah. Jurnal Statistika, 10(2): 107 – 120.
Puspitasari, I., Suparti & Wilandari, Y. 2012. Analisis Indeks Harga Saham Gabungan (IHSG) dengan Menggunakan Model Regresi Kernel. Jurnal Gaussian, 1(1): 93-102.
Web.standford.edu/-clint/bench/dw05a.htm [diakses pada tanggal 7 November 2015].
Wicaksono, W. 2014. Pemodelan Multivariate Adaptive Regression Splines (MARS) pada Faktor-faktor Resiko Angka Kesakitan Diare. Skripsi. Semarang: FSM Universitas Diponegoro.
www.bi.go.id diakses pada tanggal 7 November 2015.
www.bi.go.id/id/statistik/seki/terkini/monete r/contens/default.aspx [diakses pada tanggal 7 November 2015.]
www.bi.go.id/id/moneter/informasi_kurs/def ault.aspx [diakses pada tanggal 7 November 2015].
www.bi.go.id/id/moneter/bi-rate/data/ default.aspx [diakses pada tanggal 7 November 2015].
www.bi.go.id/id/moneter/kalkulator-kurs/ default.aspx [diakses pada tanggal 7 November 2015].
www.finance.yahoo.com [diakses pada tanggal 10 November 2015].
www.salford-system.com [diakses pada tanggal 7 November 2015].
Published
2017-02-27
Section
Articles