# KETEPATAN KLASIFIKASI DENGAN MENGGUNAKAN METODE MULTIVARIATE ADAPTIVE REGRESSION SPLINE (MARS) PADA DATA KELOMPOK RUMAH TANGGA KABUPATEN CILACAP

• Saroful Anam Universitas Negeri Semarang
• Sugiman Sugiman Universitas Negeri Semarang
• Sunarmi Sunarmi Universitas Negeri Semarang
Keywords: Classification;, Group Household;, Multivariate Adaptive Regression Spline (MARS)

### Abstract

Groups of households based on per capita expenditure is composed of two groups of poor households and non-poor households, to separate individuals or objects into a group so it can be located ata particular group can use the method of classification. The purpose of this study was to determine the classification results and errors in the results classification of households in Cilacap district based on the factors affecting the level of poverty in Cilacap with methods Multivariate Adaptive Regression Spline (MARS). MARS is a nonparametric regression method that can be used for high-dimensional data is. To get the best MARS models, do a combination of value Basis Function (BF), Maximum Interaction (MI), and the Minimum Observation (MO) by trial and error. The best model is the model that is used in combination with BF = 45, MI = 3, MO = 1 because it has the smallest value that is equal to 0,030 GCV. Based on the variables that affect groups of households in Cilacap, the result of classification of 37 households with poor category, 34 households appropriately classified as poor, while one 3 households are classified as poor. Likewise, of the 113 households with non-poor category, 113 households appropriately classified into the category of not poor, and no household misclassified into the household with non-poor category. Retrieved classification accuracy of 98.00% of the value of Apparent Error Rate (APER) at 2.00% and the Press's Q test showed that statistically MARS method has been consistent in classifying the data. So as to further research on the classification suggested using the method MARS, by looking at the value of the smallest GCV and GCV value if they have the same smallest it can be seen with the smallest MSE value judgment.

### References

Badan Pusat Statistik 2014a (2014). Indikator Kesejahteraan Rakyat 2014. Jakarta: Badan Pusat Statistik.
Budiantara, N, S. Guritno, Otok, B.W. & Suryadi, F. 2012. “Pemodelan B-Spline dan MARS pada Nilai Ujian Masuk Terhadap IPK Mahasiswa Jurusan Disain Komunikasi Visual UK Petra Surabaya,” Jurnal Teknik Industri, vol 8, Surabaya (2006).
Cox, D.R. & Snell, E.J. 1989. Cox, D.R. &Snell, E.J. 1989. Analysis of Binary Data. Second Edition. Chapman and Hall, London.
Friedman, J.H. 1991. Multivariate Adaptive Regression Splines. The Annals of Statistics, Vol. 19 No. 1.
Ghofar, Y.R. Safitri, D. & Rusgiyono, A. 2014. Klasifikasi Kelulusan Mahasiswa Fakultas SAINS dan Matematika Universitas Diponegoro Menggunakan Multivariate Adaptive Regression Spline (MARS). Jurnal Gaussian. 3(4): 839-848.
Haughton, J. & Khandker, S. R. 2012. Pedoman Tentang Kemiskinan dan Ketimpangan. Jakarta: Salemba Empat.
Bisri, M. 2014. Perbandingan Analsisis Klasifikasi menggunakan Metode K-Nearst Neighbour (K-NN) dan Multivariate Adaptive Regression Splines (MARS) pada Data Akreditasi Sekolah Dasar Negeri di Kota Semarang. Jurnal Gaussia, 3(3): 313 – 322.
Johnson, R.A. & Wichern, D.W.1992. Applied Multivariatee Statistical Analysis. Prentice Hall, New Jersey.
Nisa’ & Budiantara, N. 2012. Analisis Survival dengan Pendekatan Multivariatee Adaptive Regression Splines pada Kasus Demam Berdarah Dengue (DBD). Jurnal Sains dan Seni, 1(1): 318-323.
Muslikhah, R. 2014. Multivariate Adaptive Regression Spline (MARS) untuk Klasifikasi Kejadian Konstipasi terhadap Pemberian Air Susu Ibu dan Pemberian Air Susu Formula. Jurnal Statistika, 3(2).
Oktiva D. A. (2014). Bootstrap Aggregating
Multivariate Adaptive Regression Splines (Bagging MARS) untuk Mengklasifikasikan Rumah TAngga Miskin di Kabupaten Jombang. Jurnal Sains dan Seni Pomits. 3(2): 2337-3520.
Prasetyo, E. 2012. Data Mining Konsep dan Aplikasi menggunakan MATLAB. Yogyakarta: Penerbit Andi Yogyakarta.
Published
2017-10-20
Issue
Section
Articles