The Queue System Optimization on Motorcycle Service Based on Aspiration Level Model (Case Study of Workshop Ahass Handayani Motor (1706) Semarag)

  • Hetty Oktaviyanty Universitas Negeri Semarang
  • Nur Karomah Dwidayati Universitas Negeri Semarang
  • Arief Agoestanto Universitas Negeri Semarang
Keywords: Queue System Optimization, Aspiration Level Model, Workshop

Abstract

The purpose of this research is to determine the optimal number of server by using queuing system based on aspiration level model at Ahass Handayani Motor (1706) Semarang workshop. In general, queues arise due to service needs that exceed the capacity and service facilities available. Therefore, to provide excellent service for customers, required an optimal service system. The study was conducted by taking primary data for two days in rush hour. The results obtained, the queue system at the workshop Ahass Handayani Motor (1706) Semarang using FIFO queue discipline with 6 servers. The arrival time distribution is the poisson distribution and the service time distribution is the exponential distribution. So we get the queue model (M / M / 6) :( GD / ∞ / ∞). Based on the aspiration level model, the queuing model in the workshop of Ahass Handayani Motor (1706) Semarang is optimal with 6 servers. With condition: 1) customer does not wait more than 2 hours to be served, 2) server idle time not more than 10 minutes. Size of server effectiveness is said to be optimal because it has an average waiting time in the system for 1.6361 hours on May 22, 2017 with a percentage of idle time of the waiters 7,5947% and the average waiting time in the system for 2.01 hours on the 23rd May 2017 with the percentage of unemployed servants 7,2188%.          

 

References

Aminudin,2005. Prinsip-Prinsip Riset Operasi, Erlangga, Jakarta

Bronson, R.1993, Teori dan Soal – Soal Operation Research, Erlangga, Jakarta.

Bain Lee J. dan EngelhardT Max. 1991. Introductin to Probability and Mathematical Sttistic. United States of America.

Djauhari, & Maman A. 1990. Statistik Matematik. Bandung: Institud Teknologi
Bandung

Dimyati, A dan Tjutju Tarliah. 2004. Operation Research Model-model Pengambilan Keputusan. Bandung : PT. Sinar Baru Algesindo.

Doshi, B. T. (1986). Queueing Systes. New Jersey: Scientific Publishing Company.

Elyzabeth,dkk. Aplikasi Model Antrian Multiserver dengan Vacation pada Sistem Antrian di Bank BCA Cabang Ujung Berung. Departemen Pendidikan Matematika. FMIPA UPI.
Kakiay, Thomas J. 2004. Dasar Teori Antrian Untuk Kehidupan Nyata. Yogyakarta: Andi.

Mulyono, S. 1991. Operation Research. Jakarta : FE Universitas Indonesia.

N. A. Salmon. 2014. Analisis Sistem Antrian pada Bank Mandiri Cabang Ambon. Jurnal Barekeng Vol. 8 No. 1 Hal. 45-49. FMIPA UNPATI.

Siagian, P. 1987. Penelitian Operasional Teori dan Praktik.Jakarta: Universitas Indonesia Press.

Subagyo P. Asri M. & Handoko H. 2000. Dasar-dasar Operation Research. Edisi 2. Yogyakarta: BPTE.

Sudjana. 2005. Metode Statistika. Bandung: Tarsito.

Sugiyono. Statistika Untuk Penelitian. Bandung: Alfabeta.

Supranto, J. 2009. Statistik Teori dan Aplikasi (Edisi Ketujuh). Jakarta: Erlangga.

Taha, H. A.2004, Riset Operasi : Jilid 2, Binarupa Aksara, Jakarta.

Yolanda Irma, dkk. 2013. Estimasi Jumlah Gardu Keluar Tol Pasteur yang Optimal Menggunakan Model Antrean Tingkat Aspirasi. Jurnal Online Itenas Bandumg No. 2 Vol 1.

Yuri A.C, dkk. 2015. Penentuan Jumlah Loket Pendaftaran Pasien dan Unit Pelayanan Dokter dengan Model Tingkat Aspirasi di Rumah Sakit Khusus Gigi dan Mulut (RSKGM) Kota Bandung. Prosiding Penelitian SPeSIA. Universitas Islam Bandung.
Published
2019-01-02
Section
Articles