Cement Sales Forecasting Using Backpropagation Neural Network and Recurrent Neural Network

  • Aisyah Fany Achmalia Universitas Negeri Semarang
  • Walid Walid Universitas Negeri Semarang
  • Sugiman Sugiman Universitas Negeri Semarang
Keywords: Backpropagation Neural Network, Forecasting, Sales, Recurrent Neural Network

Abstract

Backpropagation Neural Network (BPNN) is a Neural Network (NN) that moves forward and does not have a loop where the signal flow from input neurons to output neurons, while Recurrent Neural Network (RNN) is a NN model where architecture has at least one feedback loop. In this research, cement sales forecasting was carried out at PT Semen Indonesia (Persero) Tbk by using BPNN and Elman type RNN. The purpose of this research was to obtain BPNN and Elman type RNN modeling for cement sales forecasting at PT Semen Indonesia (Persero) Tbk, as well as forecasting results using the best models. The results show that the best BPNN model is the BPNN model (9-5-1) with the Levenberg-Marquardt training algorithm with Mu initialization used is 0,02 and the aktivation function used is logsig, while the best Elman type RNN model is the Elman type RNN model (9-5-1) with gradient descent with momentum and adaptive learning rate training algorithm with the momentum used is 0,2, the learning rate used is 0,2, and the activation function used is logsig. The best model for cement sales forecasting at PT Semen Indonesia (Persero) Tbk is the BPNN model (9-5-1) with forecasting result for April 2018 to December 2018.

References

Arsyad, L. 1994. Peramalan Bisnis. Edisi Pertama. Yogyakarta: BPFE.
Bahadir, E. 2016. Prediction of Prospective Mathematics Teachers’ Academic Success in Entering Graduate Education by Using Back-propagation Neural Network. Journal of Education and Training Studies 4(5): 113-122.
Chakraborty, K., Mehrotra, K., Mohan, C. K., & Ranka, S. 1992. Forecasting the Behavior of Multivariate Time Series Using Neural Networks. Neural Networks 5: 961-970.
Fausett, L. 1994. Fundamentals of Neural Networks: Architectures, Algorithms, and Applications. New Jersey: Prentice-Hall.
Hardianto, H. N. I., Suyanto, & Purnama, B. 2011. Analisis dan Implementasi Diferential Evolution dan Recurrent Neural Network untuk Prediksi Data Time Series Studi Kasus Kurs Jual Emas. Tugas Akhir. Universitas Telkom.
Hikmah, A. 2017. Peramalan Deret Waktu Menggunakan Autoregressive (AR), Jaringan Syaraf Tiruan Radial Basis Function (RBF), dan Hibrid AR-RBF pada Inflasi Indonesia. Unnes Journal of Mathematics 7(2): 1-14.
Kaastra, I., & Boyd, M. 1996. Designing a Neural Network for Forecasting Financial and Economic Time Series. Neurocomputing 10: 215-236.
Kohzadi, N., Boyd, M. S., Kermanshahi, B., & Kaastra, I. 1996. A Comparison of Artificial Neural Network and Time Series Models for Forecasting Commodity Prices. Neurocomputing 10: 169-181.
Kontan. 2017. Permintaan Semen Nasional Tumbuh 7,8%. http://industri.kontan.co.id/news/permintaan-semen-nasional-tumbuh-78. (diakses tanggal 21 April 2018).
Kusumadewi, F. 2014. Peramalan Harga Emas Menggunakan Feedforward Neural Networks Dengan Algoritma Backpropagation. Skripsi. Universitas Negeri Yogyakarta.
Pakaja, F., Naba, A., & Purwanto. 2012. Peramalan Penjualan Mobil Menggunakan Jaringan Syaraf Tiruan dan Certainty Factor. Jurnal EECCIS 6(1): 23-28.
Portal BUMN. 2013. Semen Indonesia Waspadai Ketatnya Persaingan Bisnis Semen. http://bumn.go.id/semenindonesia/berita/703/Semen.Indonesia. (diakses tanggal 20 April 2018).
Portal BUMN. 2018. Semen Indonesia Optimis Kelebihan Pasokan Semen Tahun Ini Menyusut. http://bumn.go.id/semenindonesia/berita/1-Semen-Indonesia-optimis-kelebihan-pasokan-semen-tahun-ini-menyusut. (diakses tanggal 20 April 2018).
Puspitaningrum, D. 2006. Pengantar Jaringan Saraf Tiruan.Yogayakarta: ANDI.
Ren, C., An, N., Wang, J., Li, L., Hu, B., & Shang, D. 2014. Optimal Parameters Selection for BP Neural Network Based on Particle Swarm Optimization: A Case Study of Wind Speed Forecasting. Knowlede-Based Systems 56: 226-239.
Rizal, A. A., & Hartati, S. 2017. Prediksi Kunjungan Wisatawan dengan Recurrent Neural Network Extended Kalman Filter. Jurnal Ilmiah Ilmu Komputer 10(1): 7-18.
Salman, A. G., & Prasetio, Y. L. 2010. Implementasi Jaringan Syaraf Tiruan Recurrent Dengan Metode Pembelajaran Gradient Adaptive Learning Rate untuk Pendugaan Curah Hujan Berdasarkan Peubah ENSO. Jurnal ComTech 1(2): 418-429.
Semen Indonesia. 2017. Permintaan Semen Bakal Terus Naik. http://www.semenindonesia.com/permintaan-semen-bakal-terus-naik/.
Siang, J. J. 2004. Jaringan Syaraf Tiruan dan Pemrogramannya Menggunakan Matlab. Yogyakarta: Penerbit Andi.
Suhada, B. 2009. Peramalan Produksi Gula Nasional Melalui Pendekatan Artificial Neural Network. Jurnal Derivatif 3(1): 50-63.
Susanti, L. A. D., Arna, F., & Sethiawardana. 2013. Peramalan Harga Saham Menggunakan Recurrent Neural Network dengan Algoritma Backpropagation Through Time (BPTT). Makalah Proyek Akhir. Surabaya: Institut Teknologi Sepuluh Nopember.
Valipour, M., Banihabib, M. E., & Behbahani, S. M. R. 2013. Comparison of the ARMA, ARIMA, and the Autoregressive Artificial Neural Network Models in Forecasting the Monthly Inflow of Dez Dam Reservoir. Journal of Hydrology (online) 476: 433-441.
Udin, M., Kaloko, B. S., & Hardianto, T. 2017. Peramalan Kapasitas Baterai Lead Acid pada Mobil Listrik Berbasis Levenberg Marquardt Neural Network. Berkala Saintek 5(2): 112-117.
Walid, Subanar, Rosadi, D., & Suhartono. 2015. Fractional Integrated Recurrent Neural Network (FIRNN) for Forecasting of Time Series Data in Electricity Load in Jawa-Bali. Contemporary Engineering Sciences. Vol. 8(32): 1535-1550.
Wang, L., Wang, Z. G., & Liu, S. 2018. Optimal Forecast Combination Based on Neural Networks for Time Series Forecasting. Apllied Soft Computing Journal 66: 1-17.
Wikipedia. 2018. Semen Indonesia. http://id.wikipedia.org/wiki/Semen_Indonesia. (diakses tanggal 18 April 2018).
Yang, Y., Hu, J., Lv, Y., & Zhang, M. 2013. Predictions on the Development Dimensions of Provincial Tourism Discipline Based on the Artificial Neural Network BP Model. Higher Education Studies 3(3): 13-20.
Zhang, G. P. 2004. Business Forecasting with Artificial Neural Networks: An Overview. Hershey, PA: Idea Group Publishing.
Zhang, G., & Hu, M. Y. 1998. Neural Network Forecasting of the British Pound/US Dollar Exchange Rate. Omega 26(4): 495-506.
Published
2019-06-27
Section
Articles