PEMANFAATAN NAÏVE BAYES UNTUK MERESPON EMOSI DARI KALIMAT BERBAHASA INDONESIA

  • Aulia Syarifah Semarang State University
  • Much Aziz Muslim Semarang State University
Keywords: Naïve Bayes, Klasifikasi Teks, Emosi

Abstract

With the development of science and technology that can rapidly help people in solving all the problems and needs of the increasingly numerous and complex. These problems can be solved by several methods in mathematics one method Naïve Bayes. Naïve Bayes is a derivative of the concept of Bayes theorem. Naïve Bayes has advantages such as simple, fast, and high accuracy. Emotions play an important role in human communication in everyday life. However, the application has not been widely used in the emotions of human and computer interaction. In this study will be developed implementation Naïve Bayes and manufacturing applications using Matlab that can recognize the emotions of sentences in Indonesian language

References

Alwi, H. 2007. Kamus Besar Bahasa Indonesia. Jakarta: Balai Pustaka.

Basuki, A. 2006. Metode Bayes. Kuliah PENTS ITS.

Chuang, Z.J. & Wu,C.H. 2004. Multi modal Emotion Recognition from Speech and Text. Computational Linguistics and Chinese Language Processing Vol 9, No.2

Danismen T. & Alpkocak. A. 2008. Feeler : Emotion Classification of Text Using Vector Space Model.

http://news.liputan6.com/read/2150457/pencarian-dihentikan-ada-95-korban-tewas-longsor-banjarnegara.[2 Januari 2015 ]

Irawan, F.A. 2012. Buku Pintar Pemrograman MATLAB. Yogyarakarta: Penerbit MediaKom.

Lewis, D. D. & Ringuette, M. A. 1994. Comparison of Two Learning Algorithms for Text Categorization. In Third Annual Symposium on Document Analysis and Information Retrieval , p. 81-93 (on line : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.860; diases 29 SEptember 2012)

Parrot, E. 1994. The Natural of Emotion. Inggris: UK: Oxford University Press.

Sudjana., M. M. 1996. Metode Statistika, Edisi ke-6. Bandung: Tarsito.

Suharto, I, Grisutra, B & Miryati, A. 2004. Perekayasaan Metodologi Penelitian. Yogyakarta: ANDI.

Wulandini, F. & Nugroho, A.N. 2009. Teks Classification Using Support Vector Machine for Webmining Based Spation Temporal Analysis of the Spread of Tropical Deseased. International Conference on Rural Information and Communicattion Technology.

Published
2015-11-05
Section
Articles