
Journal of Advances in Information Systems and Technology 4(1) ISSN 2714-9714
April 2022, 33-41 33

Security Improvement of the 256-BIT AES Algorithm With

Dynamic S-Box Based on Static Parameter as the Key for

S-Box Formation

Hendi Susanto 1,*, Alamsyah 1, Anggyi Trisnawan Putra 1

1 Department of Computer Science, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Semarang, Indonesia
*Corresponding author: hendi.susanto@students.unnes.ac.id

ARTICLE INFO ABSTRACT

Article history
Received: 5 Maret 2022
Revised: 15 Maret 2022
Accepted: 12 April 2022

Strong S-BOX is required for the usage of AES encryption and
decryption process. Despite using a strong S-BOX that has better
security, the usage of AES static S-BOX is something we can improve
on. Symmetric encryption algorithm that uses block cipher is better if
combined with make the S-BOX dynamic, but the problems occurred
when we put totally random S-BOX into it because S-BOX has its own
secure measurement. S-BOX that used in AES must have been tested
having strong nonlinearity. In this research, we take collections of
strongly tested S-BOX to be used on AES encryption and decryption
processes. Because S-BOX that we used for encryption and decryption
must be the same S-BOX, we added static parameters on both
encryption and decryption process for the key in choosing which
S-BOX we are used with pseudo random number generator (Pseudo
RNG) for the algorithm. In practice, text input, hardware id’s, or other
variables can be used as the static parameter we used on this process.
Pseudo RNG will take the numbers of S-BOX-es we had for variable
of maximum output with minimum is 1, so we can always get the
index of the S-BOX chosen. The purpose of this research is to add
complexity to both the algorithm and security with dynamizing the
S-BOX so we have more possibility of output which makes it harder to
be attacked. The test result in this research is also tested with SAC test
showing the average of 0,499 which is better than the regular AES
with 0,504 and the nonlinearity is the same as regular AES which is
112.

This is an open access article under the CC–BY-SA license.

Keywords
AES
S-BOX
Dynamic S-BOX
Pseudo Random Number Generator

1 Introduction
Advanced Encryption Standard (AES) has 3 types of standard key lengths, namely 128, 192 and
256-bit keys. The longer the key used, the more secure the resulting encryption (Munir, 2004). AES
is included in the Block Cipher category, which is a cryptographic algorithm scheme that divides
the data to be encrypted into blocks of the same length, in this case AES sets 3 block lengths, which
are referred to as AES-128, AES-192 and AES-256 where the number behind it represents the
block length in bits (Juremi et al., 2017). All Block Cipher algorithm systems utilize Substitution
Box or S-BOX in their operations, unlike the Data Encryption Standard (DES) algorithm which
uses a different S-BOX in each operation, AES uses a predetermined static S-BOX (Alamsyah et
al., 2018).

Therefore, if someone either intentionally or unintentionally gets the ciphertext and the key used
for encryption, that person can find out the contents of the message or information easily by
decrypting the ciphertext with the usual AES algorithm (Manjula & Mohan, 2016). Although AES
determines to use one fixed S-BOX, the AES algorithm can still run using different S-BOX for

https://journal.unnes.ac.id/sju/index.php/jaist jaist@mail.unnes.ac.id

http://creativecommons.org/licenses/by-sa/4.0/
https://journal.unnes.ac.id/sju/index.php/jaist

H. Susanto; Alamsyah; A.T. Putra 34

encryption and decryption, provided the matrix size must be the same as the AES S-BOX
(Al-Wattar et al., 2015). If at the time of encryption using a different S-BOX, the results of the
calculation or encryption also produce a different value, so that if a data that has been encrypted
with a different S-BOX and the key is known by an irresponsible person, that person cannot know
the contents of the encrypted data, because in the decryption process it uses a different S-BOX
from the encryption process of the data (Ibrahim, 2017).

However, not all S-BOX can be used freely, S-BOX has its own level of security, as explained
by AES inventors, that S-BOX in AES must meet the nonlinearity criteria (Alsalami et al., 2016;
Hallappanavar et al., 2014), because S-BOX is the only nonlinear element in encryption and
decryption AES. The nonlinearity element in the S-BOX can be fulfilled if an S-BOX has a
nonlinearity value of 112 or more (Daemen & Rijmen, 1998). Although encryption has been
declared safe from nonlinear attacks, it cannot guarantee that the encryption is 100% safe, because
if we use the same S-BOX for all encryption, and one day there is fraud where one party finds the
encryption file and has the key used, the party can easily decrypt it with native AES algorithm with
fixed S-BOX and get all the data stored in it. It's different if we use a different S-BOX for each
encryption, even though one party already knows the key used, that party can not open the contents
of the file easily, because the encryption process uses a different S-BOX, in other words S-BOX.
S-BOX can be used as a second encryption key in the AES algorithm.

Therefore, a new problem arises, how to ensure that the S-BOX used during the encryption
process is the same S-BOX used during the decryption process. For this reason, fixed parameters
are needed for both processes (encryption and decryption) and not only limited to keys because
they will be vulnerable to being known by these parties. This can be overcome by using the
encryption key and static parameters in the program, these static parameters do not only have to be
written to the program but can also use the unique identification of the device used (eg. mac
address, device id, or others). Therefore, this study aims to modify the S-BOX used in encryption
and decryption to be dynamic, of course by considering the security element in the S-BOX.

2 Method
2.1 Related Research
This research was developed from several references that are related to the research method and
object. The use of this reference is intended to provide limitations and applications that will later be
developed further. Research conducted by Vijay (Hallappanavar et al., 2014) entitled “Efficient
Implementation of AES By Modifying S-BOX” modifies the S-BOX by changing the affine
transformation formula, i.e. changing the equation.

X8 +X4 +X3 +X+1 into X8 +X6 +X5 +X+1, (1)

Resulting in a different S-BOX. This is applied with the aim of getting an algorithm that is
lightweight or can be run with a minimum of resources to encrypt multimedia data, and the results
of their research conclude that modified AES has better results than standard AES in Hamming
Distance, stable output (Balanced Output) and Avalanche Effect.

Research by Arrag (Arrag et al., 2013) entitled “Implementation of Stronger AES by Using
Dynamic S-BOX Dependent of Master Key” proposes a more complex and secure AES
development method, namely by changing the S-BOX by performing XOR operations on each
column in the S-BOX with the first byte of the encryption key. The results of this study are
increasing complexity, increasing the distribution of results and randomization of encryption
results, so that the security of the AES algorithm increases.

Research by Jacob (Jacob et al., 2015) entitled “Towards the Generation of a Dynamic
Key-Dependent S-BOX to Enchance Security” also studying about converting the original S-BOX
from AES by using a function called Codeword Generator which is based on each key entered and
generates a new S-BOX for the AES encryption and decryption process. The results of the
application of dynamic S-BOX in this study proved to be safer than AES with the S-BOX standard.

Research by Alamsyah (Alamsyah et al., 2018) entitled “The replacement of irreducible
polynomial and affine mapping for the construction of a strong S-box” modifying S-BOX using

https://journal.unnes.ac.id/sju/index.php/jaist jaist@mail.unnes.ac.id

https://journal.unnes.ac.id/sju/index.php/jaist

35 Journal of Advances in Information Systems and Technology 4(1), 33-41

irreducible polynomial method with 8-bit constant vector and AES Affine Mapping. The results of
the S-BOX were applied with AES and concluded that the proposed S-BOX is safer than AES with
the regular S-BOX, this is evidenced by the tests carried out by testing balance, bijective,
nonlinearity, SAC, and BIC (BIC-nonlinearity).

2.2 Research Approach
This research uses pseudo random number generators to dynamically choose the S-BOX we’ll be
used on the encryption and decryption process of AES 256-bit. It is expected to be able to improve
security of the encryption result or ciphertext. The research algorithm used in this study can be seen
in Figure 1.

Figure 1. Research Algorithm

As shown on Figure 1, the main method proposed in this research is on the usage of collection
S-BOX-es and randomly choose one of the S-BOX to use on encryption or decryption process. To
make sure we use the same S-BOX on both encryption and decryption, we used static variable or in
this case we called S-BOX Key that we passed on to Pseudo Random Number Generator to get the
index of S-BOX we will use. After we get the S-BOX, the overall process of encryption and
decryption is the same as the standard of AES.

2.3 Experiment Data
This study uses text as an experimental object for the proposed method. In this study, 25
experiments will be carried out, both from the standard AES method and the AES method with
dynamic S-BOX. The data used in plaintext refers to the "Lorem Ipsum" text which is taken
sequentially with a character length of 32 characters for each text or data that represents 256 bits.

https://journal.unnes.ac.id/sju/index.php/jaist jaist@mail.unnes.ac.id

https://journal.unnes.ac.id/sju/index.php/jaist

H. Susanto; Alamsyah; A.T. Putra 36

While the primary key data is taken from random alphanumeric characters with the same character
length, which is 32 characters, and the last one is “S-BOX Key” with varying length by dividing 5
test data for each “S-BOX Key” length. Text data shown on table 1.

Table 1. Plaintext used on algorithm testing
Plaintext Encryption Key S-BOX Key
1 Lorem ipsum dolor sit

amet, cons
Jb0Vt0fKRw8t06VgRIjef5oB

WjmufiTW
Nemju6PtHufFUAIf0c3apKgL

WurWCclv
2 nsectetur adipiscing elit.

Etiam
nP0Uxkb98y5yjglcvJMDjIlI

VJAXfNlz
u9omgEPlPU9qLhrevAolVqoS

7vBoXh7d
3 dignissim, erat at dictum

alique
oip7MQmPK5kp3U5fjH4vK

TVhKUDPR7Mj
6sPzElrxWYr4HkiVflRkDO6u

PUgQb2zD
4 ligula nulla malesuada

magna, in
ivEpcJ6OoU1dqMf8MGUTX

ZIb5uSSlLum
0NsX2BJu5W3YDuqlgB9nd8

Yq9ql0ckO3
5 aliquet massa tellus id

velit. N
HzzkmP4y8VHbNWfDDpn2f

QqkxgguwYOT
8DVwa2JQiGjLhTgKQvjYVZ

LNr3L2Aqwl
6 ullamcorper diam eget

massa posu
wiby3OTqBqikIrexbQO6wV

OvNeXEsGNF
ZY2Hbea1ixZQsSBeqKeEdZN

a
7 vitae condimentum ante

pulvinar.
VK4u30Ft6gejjXidf46fBDo9

h0vX7HIi
6Jdq6mVL1JvesXvcHj5vRd4t

8 Nulla bibendum
molestie odio. Du

7Ir58ttO525IVHJ3s0bGIPZnf
gcyI6Zq

At8lcvI9JXVI2Eoi2FBtnUja

9 Duis quis lorem
accumsan, egesta

YvXdAC6qPzXWgwhhlg53h
JamKQ1wsgMk

6VHT8iApmp2Ik3eX9m9W0b
ML

10 felis sit amet, vestibulum
eros.

XBtf37BwKRyZ1IQMxwQ3
Y2YMyAYhoKKL

1ewGBIscG0mG46ntwtlywoM
t

11 dictum massa et nisl
suscipit ul

JlYEr2DxD5SdLhnNFPmDa
G8M6emBe5tK

sjU8b9FkSVkKVqn1

12 Sed ultricies sed purus
eget ves

1LYqoaGA1KClPLDvlNeuz
MJyobjedbO1

eHOqcnnJ267AvdpD

13 .Nulla facilisi. Donec
vulputate

5fCLWOXio4Pf6GJcYPyPria
83JmDNCvk

c7XtfAncUn4UVnKE

14 sapien ac vestibulum.
Suspendiss

R6pICCZXmMnNzVIv73deS
Z8Rk50zdalH

ZL20xGRl9GWys6rs

15 suscipit nibh ex, a
blandit nibh

s6klEivVu7PkahdchqxdVGzF
3swNWFdf

mA8DJJxNsc4LAANc

16 maximus sit amet. Sed
pulvinar m

14MzimCbbxrYGmGm7KUs
lmvS86agFZZn

PHcSFHfa

17 Sed placerat mauris sit
amet sag

KzkVh9Pm7hm64YXlFpumP
6bTj7XlovPP

bhASHCgk

18 gravida. Vivamus sit
amet finibu

dZIVFu4vEoIlbzuLYSzaXK
QA0M6fSu5k

EnX1OMI9

19 tellus, ac iaculis turpis.
Vesti

zSABi4AphuVOzM1BWb65
FpOut67fc8tu

A5vcOW2e

20 Vestibulum ante ipsum
primis in.

LokIgpONCWO76pzpEDZH
k16wPmTjpd36

tEKpRhCM

21 faucibus orci luctus et
ultrices

QVM5pygEFV6KOQZIwVJJ
6fptViNl3UtH

yEPS

22 cubilia curae; Lorem
ipsum dolor

2JUzAGrag7v6ddFFX6bGQ
w8vvfychOxM

GPWb

23 sit amet, consectetur
adipiscing

sW1VkbSgiapqXY9sydIBLe
uftWwoEvW8

n1wR

24 elit. Interdum et
malesuada fame

SguhpEppOnafJwvtSr6CCSR
Xb4oxy8Qn

c31w

25 ac ante ipsum primis in
faucibus

fCKVJniGSC2uIcnZCv2bjJu
LjWUijHZN

8wnm

https://journal.unnes.ac.id/sju/index.php/jaist jaist@mail.unnes.ac.id

https://journal.unnes.ac.id/sju/index.php/jaist

37 Journal of Advances in Information Systems and Technology 4(1), 33-41

Despite data shown on table 1, on this study, we also used S-BOX-es from Alamsyah (Alamsyah et
al., 2018) research results. This S-BOX-es will be used on every testing we try.

2.4 Experimental Stages
2.4.1 Algorithm Implementation

The algorithm is built using the Java programming language based on a Graphical User Interface
(GUI) with a website platform. The development of the algorithm is compiled using the help of the
Intellij IDEA application. The implementation of the Java programming language into the website
platform is built using the Spring framework, in the development of dynamic S-BOX algorithms,
assisted by the Random library contained in the java.util.random library collection to generate
random numbers in dynamic S-BOX selection, other than the library , the algorithm is built without
other help libraries, such as Cipher which contains the AES algorithm in it.

2.4.2 Algorithm Constructions

Basically, the dynamic S-BOX selection process that will be used in the encryption and decryption
process uses the Random Number Generator (RNG) algorithm to determine the S-BOX index used.
Random Number Generator was chosen as the selection algorithm because it can generate random
numbers but is consistent with the given parameters.

The Random Number Generator Algorithm used in this study uses the help of the Random
library developed by the Java utility library in the java.util.Random package, this library was
chosen due to the flexibility of the parameters used to form random numbers that can be changed as
needed. This library uses a linear congruential pseudorandom number generator algorithm defined
by D. H. Lehmer with the following formula.

Xk+1=a . Xk mod m (2)

In the Random Number Generator, the parameters used to generate random numbers include
the seed, the minimum output number, and the maximum output number. The parameters included
in this algorithm are S-BOX Key for X0 (seed), first index or zero (0) as the minimum output, and
ns-box-1 for maximum output. After the Random Number Generator process is run, the resulting
output numbers will be used to select the S-BOX that will be used by applying it to be the index of
the set of S-BOX provided, so that one S-BOX is selected to be used in the encryption and
decryption process. The last process is the main encryption or decryption process, this process we
used standard AES calculation with a given selected S-BOX from the RNG process.

3 Results and Discussion
3.1 Results
The experimental data used in this study are in Table 1. Each data is processed using standard AES
algorithm and the proposed algorithm is AES with dynamic S-BOX. The type of algorithm that will
be used is AES 256-bit with ECB mode. All data will be encrypted which then the results will be
decrypted to be able to pull the data from each process. Testing on the S-BOX will be carried out
using two methods, namely nonlinearity and SAC which are analyzed on each data.

3.1.1 Abbreviations and Acronyms
In the experiment using the standard AES algorithm, it was found that the average encryption time
was 182804.08 nanoseconds or 0.000182804 seconds, while the average decryption time was
143717.8 nanoseconds or 0.000143717 seconds, while for nonlinearity and SAC testing, it was at
fixed numbers, namely 112 and 0.504. Details of the experimental results with the standard AES
algorithm can be seen in Table 2.

https://journal.unnes.ac.id/sju/index.php/jaist jaist@mail.unnes.ac.id

https://journal.unnes.ac.id/sju/index.php/jaist

H. Susanto; Alamsyah; A.T. Putra 38

Table 2. Test result on standard AES Algorithm
Test

Data
Encryption

Time
(nanosecond)

Decryption Time
(nanosecond)

Nonlinearity SAC

1 279621 199284 112 0,504
2 212704 181211 112 0,504
3 174342 187188 112 0,504
4 158868 551851 112 0,504
5 185204 98653 112 0,504
6 297180 173580 112 0,504
7 184586 95493 112 0,504
8 474307 106588 112 0,504
9 109523 99334 112 0,504
10 105142 189723 112 0,504
11 119192 95151 112 0,504
12 105114 93151 112 0,504
13 110799 150760 112 0,504
14 148593 102220 112 0,504
15 248217 119277 112 0,504
16 141940 129277 112 0,504
17 145628 81707 112 0,504
18 239863 82509 112 0,504
19 166969 83264 112 0,504
20 147598 77994 112 0,504
21 174232 124179 112 0,504
22 181594 86817 112 0,504
23 156969 101950 112 0,504
24 127451 97956 112 0,504
25 174466 283828 112 0,504

3.1.2 Standard AES

The experimental scheme using the AES algorithm with dynamic S-BOX is almost the same as
testing using standard AES, which records the S-BOX index used, encryption time, decryption
time, nonlinearity test results and SAC testing. The complete results of the experiment can be seen
in Table 3. In the test results, it was found that the average encryption time was 215431.44
nanoseconds or 0.000215431 seconds, and the average decryption time was 173069.96
nanoseconds or 0.000173069 seconds, the results of the nonlinearity test with an average value of
112 and SAC with an average of 0.499. Tests with the best data are marked in bold.

Table 3. Test result on AES with Dynamic S-BOX
Test

Data
S-BOX
Index

Encryption
Time

(nanosecond)

Decryption
Time

(nanosecond)

Nonlinearit
y

SAC

1 6 383484 228521 112 0,498
2 6 302287 196474 112 0,498
3 3 212795 196324 112 0,498
4 6 228296 237653 112 0,498
5 7 154888 116464 112 0,497
6 5 155354 127665 112 0,494
7 1 212142 170655 112 0,501
8 1 235023 100969 112 0,501
9 0 125295 134683 112 0,508

https://journal.unnes.ac.id/sju/index.php/jaist jaist@mail.unnes.ac.id

https://journal.unnes.ac.id/sju/index.php/jaist

39 Journal of Advances in Information Systems and Technology 4(1), 33-41

10 2 114154 241322 112 0,499
11 0 118104 124075 112 0,508
12 1 115387 107166 112 0,501
13 4 117444 222992 112 0,497
14 7 163126 263976 112 0,497
15 8 234681 166973 112 0,494
16 0 209436 181157 112 0,508
17 6 138039 125426 112 0,498
18 8 559046 105056 112 0,494
19 0 184918 230561 112 0,508
20 5 203974 84027 112 0,494
21 4 216807 150810 112 0,497
22 2 166163 109285 112 0,499
23 7 289289 177453 112 0,497
24 3 349870 182850 112 0,498
25 8 195784 344212 112 0,494

3.2 Discussions
3.2.1 Algorithm Performance
From the algorithm design, by increasing the Random Number Generator process in the proposed
algorithm, it is expected that the encryption time performance of the AES algorithm with dynamic
S-BOX will decrease from the standard AES algorithm. AES algorithm with dynamic S-BOX has a
performance level of 84.85% from standard AES for the encryption process and 83.04% for the
decryption process.

Figure 6. Testing execution time result

3.2.2 Algorithm Security

Using dynamic S-BOX or S-BOX that is not a standard S-BOX in the AES algorithm has been
proven to increase security in maintaining the security of encrypted information, as has been cited
in the explanation of point 2.2.11 and various other studies related to dynamic S-BOX. The S-BOX
used by AES uses S-BOX with a 16x16 matrix, with this it is found that there is a combination of
256 against 256 numbers, with this variation it will be very difficult to solve the algorithm without
knowing the S-BOX used. However, the formation of S-BOX must meet a minimum of nonlinear
criteria so that it will not be easy for crypto-analysts to know.

Therefore, in this study, the S-BOX used was tested first to meet the nonlinear criteria, which
Alamsyah (Alamsyah et al., 2018) explained that the resulting S-BOX (used in this study) has a
better security level than the S-BOX. BOX in another study. Basically, the proposed algorithm can
use any S-BOX as long as it meets the criteria of a safe and non-linear S-BOX, which will
automatically increase the security of the algorithm used.

https://journal.unnes.ac.id/sju/index.php/jaist jaist@mail.unnes.ac.id

https://journal.unnes.ac.id/sju/index.php/jaist

H. Susanto; Alamsyah; A.T. Putra 40

In table 2 we can conclude that the performance of dynamic S-BOX in terms of nonliarity is the
same as that of static/standard S-BOX from AES. However, when viewed from Figure 7, the
average dynamic S-BOX has an SAC value of 0.499. As for the static S-BOX, it has a SAC of
0.504. The SAC value will get better the closer it is to 0.500. Thus the SAC test on the dynamic
S-BOX is better than the SAC value on the static S-BOX with an increase of 0.003 in the SAC
value between the two algorithms.

Table 2. Nonlinearity test result
Nonlinearity

Static S-BOX Dynamic S-BOX
Max. 112 112
Min. 112 112
Avg. 112 112

Figure 7. SAC security test result

4 Results and Discussion
Based on the research conducted, the conclusion obtained is that the use of dynamic S-BOX in the
AES algorithm can be applied by developers and can increase the security of the resulting
ciphertext. The total dynamic S-BOX that can be used from the developed algorithm is very
flexible so that it will increase the variety of ciphertext generated by using the RNG to select the
index of the S-BOX to be used. The results of security testing on the S-BOX also show an increase
from the standard AES S-BOX, namely in the SAC test where the average SAC value of the
proposed S-BOX is 0.499 while the standard AES algorithm has an average value of 0.504. The
SAC S-BOX value proposed is better because the SAC value will be better the closer it is to 0.500.

References
Alamsyah., Bejo, A., & Adji, T. B. (2018). The replacement of irreducible polynomial and affine

mapping for the construction of a strong S-box. Nonlinear Dynamics, 93(4), 2105–2118.

Alsalami, Y., Yeun, C. Y., Martin, T., & Khonji, M. (2016). Linear and differential cryptanalysis of
small-sized random (n, m)-S-boxes. 11th International Conference for Internet Technology
and Secured Transactions (ICITST), 447–454.

Al-Wattar, A. H., Mahmod, R., Zukarnain, Z. A., & Udzir, N. I. (2015). A new DNA-based S-Box.
International Journal of Engineering & Technology, 15(4).

Arrag, S., Hamdoun, A., Tragha, A., & Khamlich, S. E. (2013). Implementation of stronger AES
by using Dynamic S-Box dependent of Master Key. Journal of Theoretical and Applied
Information Technology, 53(2), 196–204.

https://journal.unnes.ac.id/sju/index.php/jaist jaist@mail.unnes.ac.id

https://journal.unnes.ac.id/sju/index.php/jaist

41 Journal of Advances in Information Systems and Technology 4(1), 33-41

Daemen, J., & Rijmen, V. (1998). Aes proposal: Rijndael. NIST.

Hallappanavar, V. L., Halagali, B. P., & Desai, V. V. (2014). Efficient implementation of AES by
modifying S-Box. IOSR Journal OfComputer Science (IOSR-JCE), 35–39.

Ibrahim, A. A. (2017). Perancangan pengamanan data menggunakan algoritma AES (Advanced
Encyption Standard). Jurnal Teknik Informatika, 3(1), 53–60.

Jacob, G., Murugan, A., & Viola, I. (2015). Towards the generation of a dynamic key-dependent
S-box to enhance security. Cryptology EPrint Archive.

Juremi, J., Mahmod, R., Zukarnain, Z. A., & Yasin, S. M. (2017). Modified AES s-box based on
determinant matrix algorithm. International Journal of Advanced Research in Computer
Science and Software Engineering, 7(1), 110–116.

Manjula, G., & Mohan, H. S. (2016). Constructing key dependent dynamic S-Box for AES block
cipher system. 2nd International Conference on Applied and Theoretical Computing and
Communication Technology (ICATccT), 613–617.

Munir, R. (2004). Pengantar Kriptografi. In R. Munir (Ed.), IF5054 Kriptografi (1-11). Institut
Teknologi Bandung

https://journal.unnes.ac.id/sju/index.php/jaist jaist@mail.unnes.ac.id

https://journal.unnes.ac.id/sju/index.php/jaist

