

Journal of Economic Education

http://journal.unnes.ac.id/sju/index.php/jeec

The Influence of Urbanization on Environmental, Economic, and Social Performance

Zidfina Aunal Hana^{1™}, Amin Pujiati²

^{1,2}Faculty of Economics and Business, Universitas Negeri Semarang

Article Info

Article History: Received January 2023 Accepted April 2023 Published June 2023

Keywords: Urbanization; Environmental Quality Index; Gross Regional Domestic Product; Crime

Abstract

The phenomenon of urbanization continues to increase in Indonesia. Urbanization can have both positive and negative influences. The higher urban population will push many industries, but environmental issues also potentially increase. On the other hand, more density leads to increased competition for work, which potentially increases crime. As a result, this study intends to investigate how urbanization affects Indonesia's environmental, economic, and social performance. The study employed a quantitative technique utilizing panel data from 33 Indonesian provinces for the years 2010, 2015, and 2020, which was then evaluated using the structural equation-partial least square model on SmartPLS 3.0. The findings revealed that urbanization had a significant negative effect on the environmental quality index. Meanwhile, urbanization had a significant positive effect on gross regional domestic product and the number of victims of theft. It can be concluded that urbanization encouraged economic improvement, but had the potential to worsen environmental conditions and crime. Thus, to reduce the negative impact on the environment, the government needs to emphasize the use of environmentally friendly fuels to the public. Also, implementing requirements for residents who will carry out urbanization to have skills that can be absorbed by the world of work.

© 2023 Universitas Negeri Semarang

INTRODUCTION

The process of moving people from rural to urban areas (urbanization) at the same time that the country's economic and social structure, as well as its production methods and way of life, are significantly (Song changing et a1.. 2018). Urbanization reflects the disparity in the rate of growth and uneven development of facilities one region to another (Hidayati, 2021). According to Hari Mardiansjah & Rahayu (2019), Indonesian cities need to expand their urbanization and growth processes to other regions, including archipelagic areas with relatively low urbanization rates and city growth rates. Urbanization in Indonesia is still largely concentrated on the island of Java, particularly in the West, where high urbanization rates and concentrated urban growth are a problem.

City is a strategic location, an urbanization destination, where every resident is looking for work to improve welfare (Sembiring & Bangun, 2021). According to Jedwab et al., (2017) concentrating on rural causes (agricultural modernization and rural poverty) and urban pull factors are some of the reasons that lead to urbanization (industrialization and urban-oriented policies). Economic development and urban development policies have increased attractiveness of cities through more employment opportunities and easier access to energy, information and technology (Agung et al., 2017).

Population growth in urban areas can be attributed to demographic conditions, namely mortality birth rates, rates and migration. Furthermore, in relation to population, migration flows have a large role as the a factor accelerating urbanization process (Hidayati, 2021). Figure 1 shows that the proportion of Indonesia's citizens living in urban areas has increased during the past ten years.

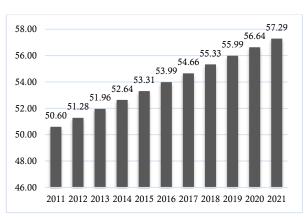


Figure 1. Indonesia's Urban Population Percentage Throughout the Previous 10 Years (2011-2021)

Source: World Bank, 2022

According to Pujiati et al., (2015)urban growth can be of positive value as long as residents who move to the city have certain skills and are suitable for urban economic activities or even create good jobs in the city. But if not, it will only cause external losses, both environmental, social, economic, political, and security. Environmental deterioration due to urbanization has been connected, both developing and developed nations (Rehman et al., 2022). With urbanization, increasing infrastructure development is better so that it can attract foreign investors, which in turn can increase or decrease environmental deteriorate (Pujiati et al., 2023). Song et al., (2018) explained that urbanization has a great effect on increasing pollutant emissions. It is known that industrialization and urbanization directly increase environmental pollution (Raheem & Ogebe, 2017). Pollutant emissions grow as a result of increasing production and production type changes during the urbanization process, including the transition from agricultural to industrial and commercial or infrastructure construction activities (Song et al., 2018). Pollutant emissions are a representation of poor air quality in a country. In Indonesia, poor air quality has the potential to reduce the overall environmental quality measure (Environmental Quality Index).

This is reinforced by several studies that also reveal that urbanization has a positive effect on CO² emissions and increases environmental degradation (Agung et al., 2017; Raheem & Ogebe, 2017; Helda et al., 2018; Hao et al., 2020; Khan et al., 2021). Another study from J. Sun et al., (2023) also showed how urbanization affected the environment, but the study's findings using a proxy Environmental Quality Index show that the more urbanized a region is, the poorer the environmental quality is (low). Nonetheless, the outcomes of studies by Rehman et al., (2022) declared that during the analysis, changes in urbanization found a negative correlation with CO² emissions. Similar findings were also put forward by Leitão & Shahbaz (2013) who asserted that urbanization improves environmental quality by reducing CO² emissions. Reduced growth in carbon emissions during urbanization can occur when improvement of public services characterized by the development of education and culture, while urbanization and economic expansion might cause a rise in carbon emissions (Ding et al., 2021).

The issue of the relationship of urbanization with the environment has been researched by many people. By using various analytical tools and implementing the STIRPAT model which is a development of IPAT and incorporates EKC theory, according to the study's findings, urbanization and environmental conditions as measured by carbon emissions have an inverse U connection (Abdallh & Abugamos, 2017; Zhang et al., 2017; Liang & Yang, 2019; Gierałtowska et al., 2022; Li et al., 2022). But, the latest research, according to Pujiati et al., (2023), demonstrates that using the ARDL analytic technique, both the short- and long-term urbanization variables have no effect on CO² emissions.

Next, along with the increasing urbanization, it can be seen that economic growth in Indonesia has also increased. This is similar to Ullah & Uddin (2021) research which states that urbanization and economic growth simultaneously in developing countries (Bangladesh). The underlying premise is that as metropolitan populations grow, so does the need for essential services there. Job creation is also boosted by population expansion. The increase in labor absorption will encourage an increase in tax revenues so that it contributes more to economic growth (Pradhan et al., 2021).

Arthur Lewis (1954) explained relationship of urbanization with the economy, starting with the process of economic development that occurs when capital accumulates because surplus labor moves from the subsistence sector to the capitalist sector. The main problem that drives the process is the traditional sector with productivity and abundant **labor** sources, while the modern sector has high productivity so that it acts as a source of capital accumulation (Todaro & Smith, 2003). Lewis's two-sector model states that agricultural entities initially experience a marginal product of zero labor, meaning that the addition of the last unit of labor does increase not agricultural production. This means that several forms of work can be transferred to the industrial sector without affecting agricultural production. This process of growth continues until the marginal product of agricultural labor is no longer zero. This process creates economic growth, especially in the industrial field (Moeis et al., 2020).

The transition of surplus labor from the subsistence sector to the capitalist sector that drives economic growth is related to the phenomenon of urbanization. This is reinforced by numerous research from Yang et al., (2017); Song et al., (2018); Liang & Yang, (2019); Feruni et al., 2020; Mata et al., (2021); Raza et al., (2021) who claimed that urbanization has a positive effect on economic findings growth. However, different produced by research from Ali et al., (2020), that all FMOLS, DOLS, and CCR long-term regression results show a statistically significant negative and inelastic link between urbanization and economic growth over the study period. This is reinforced by the reason that the resulting urbanization does not necessarily encourage economic growth, because the effects of urban congestion can limit the benefits of agglomeration (Jedwab et al., 2017). Another interesting thing is that according to Chen et al., (2014) noted that the rate of urbanization and the rate of global economic growth are unrelated.

In addition to having an influence on the environment and economy, urbanization also has an influence on various social problems. Urbanization from a social aspect can be

seen from the perspective of the crime rate. In the theory of social disorganization proposed by Shaw & McKay (1942), it is stated that crime occurs when social control is weakened due to poverty, instability in the family, population mobility or urbanization (Mardinsyah & Sukartini, 2020) and (Errol et al., 2021). Numerous earlier research have confirmed that urbanization may lead to an increase in crime. Lim et al., (2020) claimed that although society seeks to avoid crime because it is a byproduct of urbanization and human growth, it hurdles. Research encounters significant from Sabyasachi & Shupinder (2018) also produced findings that urbanization brings various negative externalities, one of which is crime. Public opinion about crime will worsen (crime rates rise) along with the high rate of urbanization (Ghani, 2017; Qi, 2020; Kuciswara et al., 2021). As cities around the world become increasingly congested, protecting the safety of humanity from the threat of crime is necessary to continue daily life in cities (Lim et al., 2020). However, different results are found in the research of Debnath & Roy (2013) which states that urbanization and education have a negative effect on the likelihood of crime.

The background and various previous studies that have been presented indicate that increasing urbanization can cause complex influences both in terms of environment, economy and social, for that it needs to be studied more deeply considering the level of urbanization in estimated Indonesia is to continue increase. Thus, this study's objective is to ascertain how urbanization has affected environmental, economic, and social performance, particularly in Indonesia. Regarding social performance, a few researchers focused on impact of urbanization through the total of criminal cases (generally) and mostly explained it through qualitative research. So that, the use of indicators by the number of theft victims in this research is something new in representing the level of social impact (crime). Theoretically, this research will enhance various existing previous studies, while practically the formulation of policy recommendations on urbanization will be proposed.

RESEARCH METHODS

The research used a quantitative methodology on panel data from 33 provinces in Indonesia for the period 2010, 2015 and 2020. In this study, independent and dependent variables were both used. Urbanization (URB) was one of the independent, then the dependent variables were the environmental quality index (IKLH), gross regional domestic product (PDRB) and the number of victims of theft (JKP). The data analysis technique made use of SMARTPLS 3.0 software and Structural Equation Modeling-Partial Least Squares (SEM-PLS) analysis. The choice of using SEM-PLS analysis was adjusted to the research objectives. The advantages of this tool were that it can test several relationships simultaneously, meaning that more than one dependent variable can be used (Rahayu & Sari, 2021). The stages of the SEM-PLS analysis included outer model testing, namely validity (convergent discriminant validity) and reliability tests, followed by formative indicator model testing namely multicollinearity. After that, inner model testing is carried out which includes determination coefficient tests (R²), effect size tests (f²), predictive relevance tests (Q²), goodness of fit (GoF) tests, and hypothesis testing (path coefficients).

Table 1
Variables and Operational Definitions

Code	Variable	Definitions	Indicators	Unit	Source
URB	Urbanization	Movement of people from villages to cities	Percentage of Urban Population	Percent	Indonesia Central Bureau of Statistics
IKLH	Environmental Quality Index	Index that describes the performance status of environmental management	Environmental quality index value per province	Base Points	Ministry of Environment and Forestry
PDRB	Gross Regional Domestic Product	The amount of value added to goods and services produced by various production units on the territory of a nation over a specific time frame (usually one year)	Total GDP per province on a constant price basis	Billion Rupiah	Indonesia Central Bureau of Statistics
JKP	Theft Victims	A person whose property has been the target of the crime of theft in the past year	Number of Theft Victims	Person	Indonesia Central Bureau of Statistics

Social

Source: Data Processed, 2023

The model equation has the following form:

IKLH =
$$\beta_{0a} + \beta_{1a}URB + \epsilon_a$$
....(1)

PDRB =
$$\beta_{0b} + \beta_{1b}URB + {}^{\varepsilon}_{b}$$
....(2)

JKP =
$$\beta_{0c} + \beta_{1c}URB + \varepsilon_{c}$$
....(3)

Note:

 β_1 is the coefficient; β_0 is the constant; and ε is the error standard.

RESULTS AND DISCUSSION

The following procedures were utilized to obtain the results of the analysis of the effect of urbanization factors on the environmental quality index, gross regional domestic product, and the number of theft victims:

Loading Factor

If an indicator's outer loading value for each variable is greater than 0.70, it is considered to meet the criteria for convergent validity with good categories. Nonetheless, loading values of 0.50 to 0.60 are still suitable for scale-stage research (Ghozali, 2014).

Table 2
Outer Loading

	g				
Variable	Indicators	Outer	Note		
		Loading			
Urbanization	URB	1.000	Valid		
Environment	IKLH	1.000	Valid		
Economics	PDRB	1.000	Valid		

Source: Data Processed, 2023

JKP

Based on Table 2 the outer loading value as a whole showed a value of 1.000 which means greater than 0.70, then the indicator was considered valid and worthy of further analysis.

1.000

Valid

a. Average Variance Extraced (AVE)

Examining AVE values is another test for determining a construct's validity. The AVE value of each construct needs to be more than 0.50 in order to qualify as a good model.

Table 3
Average Variance Extraced (AVE)

	g (
Variable	Average	Variance	Note		
	Extracted	(AVE)			
Urbanization	1.000		Eligible		
Environment	1.000		Eligible		
Economics	1.000		Eligible		
Social	1.000		Eligible		
		1 0000			

Source: Data Processed, 2023

Table 3 shows that all constructs had an Average Variance Extraced (AVE) value of 1.000

which was more than 0.50. The conclusion is that all indications in the study's variables had complied with the requirements of convergent validity and can be used for further analysis data.

Discriminant Validity Test

A construct's ability to capture phenomena that other constructs are unable to capture is demonstrated using the discriminant validity test. The Cross Loading value can be used as a test to determine whether discriminants are valid. If the value of the relevant construct loading factor indicator is greater than the value of other cross loading constructs, a research tool can be deemed discriminantly valid.

Table 4
Cross Loading

	Cross Louding			
	Econo	Environ	Soci	Urbaniza
	mics	ment	al	tion
IKL	-0.438	1.000	-	-0.374
H			0.37	
			5	
JKP	0.769	-0.375	1.00	0.330
			0	
PD	1.000	-0.438	0.76	0.579
RB			9	
UR	0.579	-0.374	0.33	1.000
В			0	

Source: Data Processed, 2023

The result that showed in Table 4 can be seen that the correlation of the construct of each aspect to its indicator when compared to other indicators had a higher value. As a result, it can be inferred that the latent concept passed the discriminant validity test because it predicted its block indicator more accurately than other block indicators.

Reliability Test

Cronbach's alpha from the construct gauge indication block and composite reliability are the two metrics used to evaluate the construct reliability test. If the composite reliability and cronbach alpha values are both more than 0.70, the construct is considered reliable (Ghozali, 2014).

Table 5
Composite Reliability and Cronbach
Alpha Values

- I più v ui vo						
	Composi	Cronbac	Note			
	te	h Alpha				
	Reliabilit					
	y					
Environme	1.000	1.000	Reliabl			
nt			e			
Economics	1.000	1.000	Reliabl			
			e			
Socia1	1.000	1.000	Reliabl			
			e			
Urbanizati	1.000	1.000	Reliabl			
on			e			

Source: Data Processed, 2023

According to Table 5, each construct's composite reliability and cronbach alpha values both showed a value of 1.000, which indicated that the value was higher than 0.70. Thus, it can be said that construct data was considered reliable.

Evaluation of Formative Measurement Models

One of the measurements of formative indicators is the manifest variable in the block, which must be tested for multicollinearity. This can be done by looking at the variance inflation factor (VIF) value. Multicollinearity occurs when the VIF value is above 10 (Ghozali, 2014).

Table 6
Variance Inflation Factor (VIF)

Variable	Variance Inflation Factor (VIF)
IKLH	1.000
JKP	1.000
PDRB	1.000
X	1.000

Source: Data Processed, 2023

Based on Table 6, it can be seen that there is no VIF value greater than 10, so this research model is free from multicollinearity and can be continued for further testing.

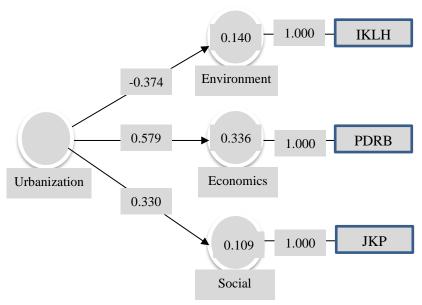


Figure 2. Outer Model Path Diagram

Source: Data Processed, 2023

Model)

Coefficient of Determination (R^2)

In order to evaluate the model's goodness of fit, structural models are tested using the R-squared value. R-squared is used to evaluate the degree of influence that external factors have on endogenous variables (Habriyanto et al., 2019). Based on Ghozali (2014) endogenous latent variables in structural models had 3 categories R² values, that are 0.67 (good), 0.33 (moderate), and 0.19 (weak).

Table 7 Coefficient Determination (R²)

		` '
Variable	R Square	
Environment	0.140	
Economics	0.336	
Social Social	0.109	

Source: Data Processed, 2023

Based on Table 7, it was evident that the environment variable's R2 value was 0.140 belonged to the weak category. This value showed that environmental variables of 14% may be explained by factors related to urbanization, while the remaining 86% were explained by factors not included in this study's research model. The value of R² of the economic variable of 0.336 belonged to the medium category. This value showed that economic variables of 33.6% can be explained by factors related to urbanization, while the remaining 66.4% were explained by factors not included in

Results of Structural Model Testing (Inner this study's research model. While the value of R² of the social variable of 0.109 was included in the weak category. This value showed that social variables of 10.9% can be explained by urbanization variables, while the remaining 89.1% were explained by other variables outside the analysis model of this study.

1.1.1 Effect Size (f²)

To ascertain the benefits of the model, the Fsquare test was used. Based on Ghozali & Latan (2017), the f² coefficient is breaking down into 3 categories, that are \geq 0.02 (small), \geq 0.15 (medium), and ≥ 0.35 (large).

Table 8 f² Value

Variable	f-square
Urbanization –	0.163
Environment	
Urbanization –	0.505
Economics	
Urbanization – Social	0.123

Source: Data Processed, 2023

Table 8 shows that the value f² urbanization – environment was 0.163 which means medium. The f² urbanization – economic value was 0.505 which means large, and the f² urbanization – social value was 0.123 which means small.

Relevance of Prediction (Q2)

The Q-square evaluates how well the model generates parameter estimates and observed values. When the model's q-square value is larger than 0, it is considered to have predictive significance, but when it is lower than 0, it is considered to have no predictive relevance at all (Ghozali, 2014). The formula used to determine the value of $Q^2 = 1 - (SSE/SSO)$.

Table 9
Predictive Relevance Value

Variable	SSO	SSE	Q ² (=1 -
			SSE/SSO)
Environment	99.000	87.415	0.117
Economics	99.000	67.459	0.319
Social	99.000	88.750	0.104
Urbanization	99.000	99.000	

Source: Data Processed, 2023

Table 9 shows that each variable's overall Q^2 value was greater than 0, indicating that the research construct had good predictive relevance.

Goodness of Fit Test

Goodness of fit is a measurement or index developed by Tenenhaus et al., (2004). The usefulness of the Goodness of Fit (GoF) index is as a solution to validate PLS models globally (Tenenhaus et al., 2005). Based on Ghozali & Latan (2017), GoF measurement criteria are divided into 3 categories, namely ≥ 0.10 (small), ≥ 0.25 (medium) and ≥ 0.36 (large).

Table 10 Goodness of Fit Test Results

Variable	R-Square	Communality
Environment	0.140	1.000
Economics	0.336	1.000
Social	0.109	1.000
Average	0.195	1.000

Source: Data Processed, 2023

Based on Ghozali & Latan (2017) the calculation of the GoF value is obtained from the square root of the Average Communality multiplied by the Average R-Square (ARS), which is written in the following formula:

GoF =
$$\sqrt{Communality} \times ARS$$

= $\sqrt{1.000} \times 0.195$
= 0.441

Based on the results of these calculations, a GoF value of 0.441 was obtained, which means that the model in this study was included in the criteria of having a large GoF value.

Estimation of Path Coefficient

The path coefficient test is a test used to determine how each exogenous latent variable affects the endogenous latent variable. The influence of each variable determines the form of the coefficient of determination after showing the relationship and influence of the model path (Habriyanto et al., 2019).

Table 11
Estimation of Path Coefficient

	Original Sample (O)	Sample Mean (M)	Standard Deviation (STDEV)	T Statistics (O/STDEV)	P Values
Urbanization -> Environment	-0.374	-0.371	0.100	3.737*	0.000**
Urbanization -> Economics	0.579	0.577	0.089	6.520*	0.000**
Urbanization -> Social	0.330	0.330	0.074	4.479*	0.000**

Note: * t-statistic value is greater than t-tabel (1.96); ** p value significant at alpha 0.05

Based on Table 11, the coefficient between the latent variable of urbanization and the latent variable of the environment had a negative effect with the original sample value of -0.374 and t-statistic of 3.737 (greater than t table; 1.96) and p-value of 0.000 (< 0.05). These results can be interpreted that urbanization variables had a negative and significant effect on the environment which in this case was represented by the IKLH

indicator. Thus, if every one percent increase in the city's population will cause the environmental quality index to decrease by 0.374 basis points.

The results of data processing in this study support the research of Liu et al., (2020); Rahman & Alam, (2021); and Chandra Voumik & Sultana, (2022) which stated that urbanization has a positive effect on environmental pollution, therefore increasing the level of local urbanization will

of loca1 hamper the quality the environment. According to the Environmental Quality Index Report from the Ministry of Environment and Forestry, the population density of an area also tends to affect environmental quality. Water quality is deteriorating due to increased household waste and expanded land accommodate the population's needs. Traffic activity also has a strong impact on air quality, especially in large and metropolitan areas. It can be seen that Java Island, which is the main destination for people in urbanization, has the lowest IKLH value compared to other islands. In 2010 the IKLH of Java island of 59.82 was ranked last after Sulawesi Island (77.21), Maluku Island & Papua (74.29), Bali & Nusa Tenggara (74.19),Sumatra (73.63), and Kalimantan (64.02). Based on provinces, the 3 provinces that had the lowest IKLH scores in 2010 were DKI Jakarta (41.81), Banten (48.98) and East Java (49.49).

In 2015 and 2020, DKI Jakarta province remained the province with the lowest IKLH value. namely 43.79 (2015) and 52.98 (2020). This is because DKI Jakarta has a high population density and is the center of economic activities, including industry. Despite the increase in status from the very poor category (40 < IKLH \leq 50) and slowly becoming less good (50 < IKLH \leq 60), however, the quality of the environment there is still quite worrying. In 2015 after DKI Jakarta, the three provinces with the lowest IKLH scores were Yogyakarta (50.99), Riau (53.07) and Banten (55.36). Meanwhile, in 2020 after DKI Jakarta, the three provinces with the lowest IKLH scores are Banten (59.37), West Java (59.4) and North Sumatra (69.9). In 2020 the quality of the environment has improved, this is due to the Covid-19 pandemic which limits human mobility so that air pollution can be reduced.

Nationally, during 2010-2020 the environmental quality index in Indonesia tended to increase. In 2010, Indonesia's environmental quality index was 61.07 basis points in the category of quite good ($60 < IKLH \le 70$). Then, in 2015 Indonesia's environmental quality index increased to 68.23 basis points with a fairly good category, and in 2020 it increased again to 70.27 basis points with a good category ($70 < IKLH \le 80$). Although the national environmental quality index has

increased, on the other hand, air pollution in Indonesia has also increased along with the increase in urbanization. In 2010, CO² emissions in Indonesia amounted to 1.87 metric tons per capita, increased to 2.13 metric tons per capita in 2015, then increased again in 2020 to 2.16 metric tons per capita.

The increase in CO² emissions is partly due to unplanned urbanization, which puts pressure on complicated urban planning, with increasing population density, overexploitation of resources, deforestation and pollution (Y. Sun et al., 2022). Based on reports from the OECD, the average population exposed to PM 2.5 in Indonesia tended to be high (above 15 micrograms/m³) and even reached 20.4 micrograms/m³ in 2013. In the 2015-2020 time span, this figure was 18.9, 19.4, 17.2, 18.7, 19.7 and 18.1 micrograms/m³.

Based on Table 11, the coefficient between the latent variable of urbanization and the economic variable had a positive effect with an original sample value of 0.579 and t-statistic of 6.520 and a p-value of 0.000. These results can be interpreted that urbanization variables had a positive and significant effect on the economy, which in this case was represented by gross regional domestic product indicators. So, if every one percent of the city's population increased, it will cause gross regional domestic product to increase by 0.579 billion rupiah. This condition can be seen based on the publication of the Central Statistics Agency in 2010-2020 the national gross domestic product continues to increase. In 2010, gross domestic product on a constant price basis of 6,864,133.13 billion rupiahs increased 8,982,517.1 billion rupiahs in 2015, and rose again to 10,722,999.30 billion rupiahs in 2020.

In 2020, gross domestic product had decreased compared to 2019 (10,949,155.40 billion rupiah). This was because the Covid-19 pandemic had affected the health sector then the economic sector had also experienced sluggishness. Public mobility was limited, thus reducing economic activity. However, the Indonesian economy tends to recover and bounce back over time.

According to Y. Sun et al., (2022) urbanization has a number of advantages, including increased work possibilities, higher earnings, and higher living standards. This is consistent with Arthur Lewis's proposed theory

that urbanization will make the transition of surplus labor from rural areas to urban areas. So that later, the workforce will be absorbed and move the wheels of the economy, which will create economic growth. Wang & Conesa (2022) research states that the decline in rural migration will significantly pull down the urban labor force and economic growth in China (start around 2020).

relationship This positive between urbanization and the economy represented by gross regional domestic product is in accordance with existing theory. The findings of this study confirm earlier research made by Bakirtas & Akpolat (2018) that urbanization can contribute to economic growth. Zheng & Walsh (2019) also mentioned that, in general, urbanization as a development aspect of progress is becoming a more significant factor in China's economic expansion. And also reinforced by the research of Moutinho Madaleno (2020) there is a two-way causal relationship between GDP and urbanization in Nigeria and Libya, according to the results of longterm elasticity, which also reveal that urbanization has a positive impact on GDP in Libya and Angola but has a negative impact on Gabon and Equatorial Guinea.

In addition to affecting environmental and economic performance, it turns out that urbanization also affects the social community around it. Based on Table 11, the coefficient between latent urbanization and social variables had a positive effect with an original sample value of 0.330 and t-statistic of 4.479 and a p-value of 0.000. These results can be interpreted that the urbanization variable had a positive and significant effect on social which in this case was represented by the indicator of the Number of Victims of Theft (Crime). So, if every one percent of the city's population increased, it will cause the number of theft victims to increase by 0.330 people.

This condition can be observed based on the release of Criminal Statistics published by the Central Statistics Agency. According to the publication's findings, it was evident that the population of victims of theft crimes was the most frequent and tended to increase than victims of other types of crime. In 2010, the percentage of the population victims of theft crimes nationally was 65.37 percent, and tended to increase to 80.85 percent in 2015. In fact, during the last three years,

namely 2019, 2020 and 2021, the percentage of the population victims of theft had also increased, namely 85.35 percent, 86.51 percent and 86.77 percent.

The crime is concentrated mostly in heavily populated places, it is likely that society and wealth are the primary driving forces behind crime (Jiang et al., 2022). According to Imai et al., (2017), rapid urban population growth or rural-urban migration can increase poverty. This poverty occurs because not all villagers who migrate to cities have education and skills that are in accordance with the available job opportunities, which ultimately leads to unemployment. This poverty ratio has a positive and significant influence on the occurrence of crime (Debnath & Roy, 2013). In other words, poverty due to urbanization encourages someone to commit crimes, one of which is theft. As in the case of urbanization in India where urbanization increases car theft (Bharadwaj, 2014).

The findings of this research are consistent with previous research by Malik (2016) where increased urbanization weakens people's integration and thus reduces informal social control, increasing crime, chaos, victimization, and fear of crime. And reinforced by research result by Errol et al., (2021) which explained that urbanization has a significant positive effect on violent crime as a dependent variable. Recent research conducted by Onyeneke & Karam (2022) also revealed that some crimes are related to and other factors urbanization, such unemployment, inequality, and income inequality directly contribute to the increased crime in urban areas.

CONCLUSION

Urbanization can have both positive and negative influences on life. This study's empirical results supported the notion that urbanization negatively and significantly impacted the environmental quality index. As a result, the higher the rate of urbanization, the worse the environmental quality score. Urbanization had a significant positive effect on gross regional domestic product and the number of victims of theft (crime). That is, if urbanization increases, there will also be an increase in gross regional

domestic product and the number of theft victims. Differences in the use of indicators used to measure crime rates due to increased urbanization produce the same effect. Thus, this research has contributed to the literature on the effect of urbanization on various performances, which is still inconsistent in several previous studies.

The phenomenon of urbanization continues to increase will be followed by the improvement in facilities and infrastructure, especially in the field of transportation. So, to reduce the negative environmental impact, the government needs to implement a sustainable transportation system, one of which is by only environmentally providing friendly fuel. In addition, it is also necessary to encourage socialization in the community to switch from the use of fuel with low RON to fuel with high RON which is more environmentally friendly. In reducing crime rates as a side effect of urbanization, the government needs to implement special requirements, namely residents who will urbanize must have the ability (skills) to be useful in the process of finding jobs in the city. These efforts are expected to reduce unemployment and reduce one's intention to commit crimes (theft) due to social disorganization factors.

The limitations of this study are only focused on the influence of urbanization on environmental, economic, and social performance. For future research, it is necessary to add cultural performance in variables, considering that culture influences people's mindsets. Cultural performance must be included to formulate urbanization strategies or sustainable urban development without leaving local wisdom.

REFERENCES

- Abdallh, A. A., & Abugamos, H. (2017). A semiparametric panel data analysis on the urbanisation-carbon emissions nexus for the MENA countries. *Renewable and Sustainable Energy Reviews*, 78(March), 1350–1356. https://doi.org/10.1016/j.rser.2017.05.006
- Agung, P., Hartono, D., & Awirya, A. A. (2017). The Effect of Urbanization on Energy Consumption and CO2 Emissions: An Analysis of Provinces in Indonesia. *Jurnal Ekonomi Kuantitatif Terapan*, 9–18.
 - https://doi.org/10.24843/jekt.2017.v10.i01.p02

- Ali, H. S., Nathaniel, S. P., Uzuner, G., Bekun, F. V., & Sarkodie, S. A. (2020). Trivariate modelling of the nexus between electricity consumption, urbanization and economic growth in Nigeria: fresh insights from Maki Cointegration and causality tests. *Heliyon*, *6*(2), e03400. https://doi.org/10.1016/j.heliyon.2020.e03400
- Bakirtas, T., & Akpolat, A. G. (2018). The relationship between energy consumption, urbanization, and economic growth in new emerging-market countries. *Energy*, *147*, 110–121. https://doi.org/10.1016/j.energy.2018.01.011
- Bharadwaj, A. (2014). Is poverty the mother of crime? Empirical evidence of the impact of socioeconomic factors on crime in India. *Atlantic Review of Economics*, *1*(1), 6–37.
- Chandra Voumik, L., & Sultana, T. (2022). Impact of urbanization, industrialization, electrification and renewable energy on the environment in BRICS: fresh evidence from novel CS-ARDL model. *Heliyon*, 8(11), e11457. https://doi.org/10.1016/j.heliyon.2022.e11457
- Chen, M., Zhang, H., Liu, W., & Zhang, W. (2014). The global pattern of urbanization and economic growth: Evidence from the last three decades. *PLoS ONE*, *9*(8). https://doi.org/10.1371/journal.pone.0103799
- Debnath, A., & Roy, N. (2013). Linkage between internal migration and crime: Evidence from India. *International Journal of Law, Crime and Justice*, 41(3), 203–212. https://doi.org/10.1016/j.ijlcj.2013.06.001
- Ding, Y., Yang, Q., & Cao, L. (2021). Examining the impacts of economic, social, and environmental factors on the relationship between urbanization and co2 emissions. *Energies*, *14*(21). https://doi.org/10.3390/en14217430
- Errol, Z., Madsen, J. B., & Moslehi, S. (2021). Social disorganization theory and crime in the advanced countries: Two centuries of evidence. *Journal of Economic Behavior and Organization*, *191*, 519–537. https://doi.org/10.1016/j.jebo.2021.09.017
- Feruni, N., Hysa, E., Panait, M., Rădulescu, I. G., & Brezoi, A. (2020). The impact of corruption, economic freedom, and urbanization on economic development: Western balkans versus eu-27. *Sustainability (Switzerland)*, *12*(22), 1–22. https://doi.org/10.3390/su12229743
- Ghani, Z. A. (2017). A comparative study of urban crime between Malaysia and Nigeria. *Journal of Urban Management*, 6(1), 19–29. https://doi.org/10.1016/j.jum.2017.03.001
- Ghozali, I. (2014). Structural Equation Modeling: An alternative method with partial least squares (PLS) equipped with Smartpls 3.0 software. Xlstat 2014 and

- WarpPLS 4.0 (4th ed.). Badan Penerbit Universitas Diponegoro.
- Ghozali, I., & Latan, H. (2017). Partial Least Squares: Concepts, Methods and Applications Using WarpPLS 5.0 Programs (Third). Badan Penerbit Universitas Diponegoro.
- Gierałtowska, U., Asyngier, R., Nakonieczny, J., & Salahodjaev, R. (2022). Renewable Energy, Urbanization, and CO2 Emissions: A Global Test. *Energies*, *15*(9), 1–14. https://doi.org/10.3390/en15093390
- Habriyanto, H., Nasution, M. Y., & Harahap, M. Y. (2019). Analysis of Consumption Patterns of Jambi City People in Ramadan Using Smart PLs 3.0 Approach. *Jurnal Ilmiah Universitas Batanghari Jambi*, 19(1), 118. https://doi.org/10.33087/jiubj.v19i1.573
- Hao, Y., Zheng, S., Zhao, M., Wu, H., Guo, Y., & Li, Y. (2020). Reexamining the relationships among urbanization, industrial structure, and environmental pollution in China—New evidence using the dynamic threshold panel model. *Energy Reports*, 6, 28–39. https://doi.org/10.1016/j.egyr.2019.11.029
- Hari Mardiansjah, F., & Rahayu, P. (2019). Urbanization and Growth of Indonesian Cities: A Comparison Between Indonesia's Macro Regions. *Jurnal Pengembangan Kota*, 7(1), 91–110. https://doi.org/10.14710/jpk.7.1.91-108
- Helda, N. P., Jamal, A., & Dawood, T. C. (2018). The Influence of Urbanization, GDP Growth in The Industrial Sector and GDP Growth in The Transportation Sector on Environmental Pollution in Indonesia. *Jurnal Ekonomi Dan Kebijakan Publik Indonesia*, 5(2), 168–183.
- Hidayati, I. (2021). Urbanization and Social Impact in Big Cities: An Overview. *Jurnal Ilmiah Ilmu Sosial*, 7(2), 212. https://doi.org/10.23887/jiis.v7i2.40517
- Imai, K. S., Gaiha, R., & Garbero, A. (2017). Poverty reduction during the rural–urban transformation: Rural development is still more important than urbanisation. *Journal of Policy Modeling*, *39*(6), 963–982.
- https://doi.org/10.1016/j.jpolmod.2017.10.002 Jedwab, R., Christiaensen, L., & Gindelsky, M. (2017). Demography, urbanization and development: Rural push, urban pull and ... urban push? *Journal of Urban Economics*, 98, 6–16. https://doi.org/10.1016/j.jue.2015.09.002
- Jiang, Y., Guo, B., & Yan, Z. (2022). Multi-Criterion Spatial Optimization of Future Police Stations Based on Urban Expansion and Criminal Behavior Characteristics. ISPRS International

- Journal of Geo-Information, 11(7). https://doi.org/10.3390/ijgi11070384
- I., Hou, F., Le, H. P., & Ali, S. A. (2021). Do natural resources, urbanization, and valueadding manufacturing affect environmental quality? Evidence from the top ten manufacturing countries. Resources Policy, 102109. 72(February), https://doi.org/10.1016/j.resourpol.2021.10210
- Kuciswara, D., Muslihatinningsih, F., & Santoso, E. (2021). The Effects of Urbanization, Poverty Rate, and Income Inequality on Crime in East Java Province. *Jurnal Akuntansi Dan Ekonomi*), 6(3), 2–9. https://doi.org/10.29407/jae.v6i3.16307
- Leitão, N. C., & Shahbaz, M. (2013). Carbon Dioxide Emissions, Urbanization And Globalization: A Dynamic Panel Data. *Economic Research Guardian*, 3(1), 22–32.
- Li, A., Li, X., Li, Y., Wang, H., & Zhang, H. (2022). The Impact of Urbanization on Carbon Emissions and Spatial–Temporal Differentiation Based on Meta-Analysis in China. *Sustainability* (Switzerland), 14(22). https://doi.org/10.3390/su142214840
- Liang, W., & Yang, M. (2019). Urbanization, economic growth and environmental pollution: Evidence from China. *Sustainable Computing: Informatics and Systems*, 21, 1–9. https://doi.org/10.1016/j.suscom.2018.11.007
- Lim, S. B., Yong, C. K., Malek, J. A., Jali, M. F. M., Awang, A. H., & Tahir, Z. (2020). Effectiveness of fear and crime prevention strategy for sustainability of safe city. *Sustainability* (*Switzerland*), 12(24), 1–24. https://doi.org/10.3390/su122410593
- Liu, X., Sun, T., & Feng, Q. (2020). Dynamic spatial spillover effect of urbanization on environmental pollution in China considering the inertia characteristics of environmental pollution. Sustainable Cities and Society, 53(October 2019), 101903.
 - https://doi.org/10.1016/j.scs.2019.101903
- Malik, A. A. (2016). Urbanization and Crime: A Relational Analysis. *IOSR Journal Of Humanities And Social Science (IOSR-JHSS, 21*(1), 68–74. https://doi.org/10.9790/0837-21146874
- Mardinsyah, A. A., & Sukartini, N. M. (2020). Economic Inequality, Poverty and Access to Information: How Does It Affect Crime? *Ekonika: Jurnal Ekonomi Universitas Kadiri*, *5*(1), 19. https://doi.org/10.30737/ekonika.v5i1.554
- Mata, Mário Nuno., Oladipupo, S. D., Husam, Rjou., Ferrão, Joaquim António., Altunta, Mehmet.,

- Martins, Jéssica Nunes., Kirikkaleli, Dervis., Dantas, Rui Miguel., &, & Lourenço, A. M. (2021). Another Look into the Relationship between Economic Growth, Carbon Emissions, Agriculture and Urbanization in Thailand: *Energies*, 14, 1–12. https://doi.org/https://doi.org/10.3390/en14165132
- Moeis, F. R., Dartanto, T., Moeis, J. P., & Ikhsan, M. (2020). A longitudinal study of agriculture households in Indonesia: The effect of land and labor mobility on welfare and poverty dynamics. *World Development Perspectives*, 20(August), 100261.
 - https://doi.org/10.1016/j.wdp.2020.100261
- Moutinho, V., & Madaleno, M. (2020). Economic growth assessment through an ARDL approach: The case of African OPEC countries. *Energy Reports*, 6, 305–311. https://doi.org/10.1016/j.egyr.2020.11.253
- Onyeneke, C. C., & Karam, A. H. (2022). An Exploratory Study of Crime: Examining Lived Experiences of Crime through Socioeconomic, Demographic, and Physical Characteristics. *Urban Science*, 6(3), 43. https://doi.org/10.3390/urbansci6030043
- Pradhan, R. P., Arvin, M. B., & Nair, M. (2021). Urbanization, transportation infrastructure, ICT, and economic growth: A temporal causal analysis. *Cities*, *115*(September 2019), 103213. https://doi.org/10.1016/j.cities.2021.103213
- Pujiati, A., Nihayah, D. M., & Bowo, P. A. (2015).

 Causality Between Urban Concentration and Environmental Quality. *Jurnal Ekonomi Pembangunan: Kajian Masalah Ekonomi Dan Pembangunan*, 16(1), 46. https://doi.org/10.23917/jep.v16i1.937
- Pujiati, A., Yanto, H., Dwi Handayani, B., Ridzuan, A. R., Borhan, H., & Shaari, M. S. (2023). The detrimental effects of dirty energy, foreign investment, and corruption on environmental quality: New evidence from Indonesia. *Frontiers in Environmental Science*, 10(January), 1–11. https://doi.org/10.3389/fenvs.2022.1074172
- Qi, Z. (2020). Rural to urban migration, crime, and sentencing disparities in Guangdong, China. *International Journal of Law, Crime and Justice*, 63(June), 100421. https://doi.org/10.1016/j.ijlcj.2020.100421
- Rahayu, S., & Sari, F. P. (2021). IMPROVING STUDENTS' FINAL PROJECT DATA ANALYSIS SKILLS THROUGH SMARTPLS PROGRAM TRAINING. *Jurnal Masyarakat Mandiri*, *5*(6), 5–12.

- Raheem, I. D., & Ogebe, J. O. (2017). CO2 emissions, urbanization and industrialization: Evidence from a direct and indirect heterogeneous panel analysis. *Management of Environmental Quality: An International Journal*, 28(6), 851–867. https://doi.org/10.1108/MEQ-09-2015-0177
- Rahman, M. M., & Alam, K. (2021). Clean energy, population density, urbanization and environmental pollution nexus: Evidence from Bangladesh. *Renewable Energy*, 172, 1063–1072. https://doi.org/10.1016/j.renene.2021.03.103
- Raza, K., Shahbaz, M., Jiao, Z., & Tufail, M. (2021). How energy consumption, industrial growth, urbanization, and CO 2 emissions affect economic growth in Pakistan? A novel dynamic ARDL simulations approach. *Energy*, 221, 119793.

https://doi.org/10.1016/j.energy.2021.119793

- Rehman, A., Radulescu, M., Cismas, L. M., Alvarado, R., Secara, C. G., & Tolea, C. (2022). Urbanization, Economic Development, and Environmental Degradation: Investigating the Role of Renewable Energy Use. *Sustainability (Switzerland)*, 14(15). https://doi.org/10.3390/su14159337
- Sabyasachi, T., & Shupinder, K. (2018). Do negative externalities have any impact on populations agglomerations? Evidence from urban India. *Theoretical and Empirical Researches in Urban Management*, 13(3), 5–24.
- Sembiring, P. A. B., & Bangun, M. (2021). Policy Analysis of Urbanization Control of Berastagi City, Karo Regency, North Sumatra. *Jurnal Darma Agung*, 29(2), 79. https://doi.org/10.46930/ojsuda.v29i2.935
- Song, C., Liu, Q., Gu, S., & Wang, Q. (2018). The impact of China's urbanization on economic growth and pollutant emissions: An empirical study based on input-output analysis. *Journal of Cleaner Production*, 198, 1289–1301. https://doi.org/10.1016/j.jclepro.2018.07.058
- Sun, J., Hu, Y., Li, Y., Weng, L., Bai, H., Meng, F., Wang, T., Du, H., Xu, D., & Lu, S. (2023). A Temporospatial Assessment of Environmental Quality in Urbanizing Ethiopia. *Journal of Environmental Management*, 332(February 2022), 117431. https://doi.org/10.2139/ssrn.4051452
- Sun, Y., Li, H., Andlib, Z., & Genie, M. G. (2022). How do renewable energy and urbanization cause carbon emissions? Evidence from advanced panel estimation techniques. *Renewable Energy*, 185, 996–1005.
- https://doi.org/10.1016/j.renene.2021.12.112 Tenenhaus, M., Amato, S., & Vinzi, V. E. (2004). A global Goodness – of – Fit index for A or PLS

- structural. *Proceedings of the XLII SIS Scientific Meeting*, *November*, 739–742.
- Tenenhaus, M., Vinzi, V. E., Chatelin, Y. M., & Lauro, C. (2005). PLS path modeling. *Computational Statistics and Data Analysis*, 48(1), 159–205. https://doi.org/10.1016/j.csda.2004.03.005
- Todaro, Michael P & Smith, S. C. (2003). *Development in the Third World* (Eight). Penerbit Erlangga.
- Ullah, K. M., & Uddin, K. (2021). The relationships between economic growth and cropland changes in Bangladesh: An evidence based on annual land cover data. *Environmental Challenges*, 5(June), 100252.
 - https://doi.org/10.1016/j.envc.2021.100252
- Wang, Y., & Conesa, J. C. (2022). The role of demographics and migration for the future of economic growth in China. *European Economic Review*, 144(June 2021), 104076.

- https://doi.org/10.1016/j.euroecorev.2022.104
- Yang, Y., Liu, J., & Zhang, Y. (2017). An analysis of the implications of China's urbanization policy for economic growth and energy consumption. *Journal of Cleaner Production*, *161*, 1251–1262. https://doi.org/10.1016/j.jclepro.2017.03.207
- Zhang, N., Yu, K., & Chen, Z. (2017). How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis. *Energy Policy*, 107(January), 678–687. https://doi.org/10.1016/j.enpol.2017.03.072
- Zheng, W., & Walsh, P. P. (2019). Economic growth, urbanization and energy consumption A provincial level analysis of China. *Energy Economics*, 80, 153–162. https://doi.org/10.1016/j.eneco.2019.01.004