Arjasakusuma, S., Kusuma, S. S., Saringatin, S., Wicaksono, P., Mutaqin, B. W., & Rafif, R. (2021). Shoreline Dynamics in East Java Province, Indonesia, from 2000 to 2019 Using Multi-Sensor Remote Sensing Data. Land, 10(2), 100.
Arjasakusuma, S., Swahyu Kusuma, S., Rafif, R., Saringatin, S., & Wicaksono, P. (2020). Combination of Landsat 8 OLI and Sentinel-1 SAR Time-Series Data for Mapping Paddy Fields in Parts of West and Central Java Provinces, Indonesia. ISPRS International Journal of Geo-Information, 9(11), 663.
Awaliyan, M. R., & Sulistioadi, Y. B. (2018). Klasifikasi Penutupan Lahan Pada Citra Satelit Sentinel-2A Dengan Metode Tree Algorithm. ULIN: Jurnal Hutan Tropis, 2(2).
Bangun, Y., Simanjuntak, B. H., & Sutrisno, A. J. Analisis Perubahan Penggunaan Lahan Sawah dari Tahun 2008–2018. LaGeografia, 19(3), 302-315.
Farda, N. M. (2017). Multi-temporal land use mapping of coastal wetlands area using machine learning in Google earth engine. IOP Conference Series: Earth and Environmental Science (Vol. 98, No. 1, p. 012042). IOP Publishing.
Fariz, T. R., & Nurhidayati, E. (2020). Mapping Land Coverage in the Kapuas Watershed Using Machine Learning in Google Earth Engine. Journal of Applied Geospatial Information, 4(2), 390-395.
Fariz, T. R., Daeni, F., & Sultan, H. (2021). Pemetaan Perubahan Penutup Lahan Di Sub-DAS Kreo Menggunakan Machine Learning Pada Google Earth Engine. Jurnal Sumberdaya Alam dan Lingkungan, 8(2), 85-92.
Gobel, E. Z., & Koton, Y. P. (2017). Pengelolaan Danau Limboto dalam Perspektif Implementasi Kebijakan Publik. Deepublish
Hardini, A. R., Helmi, M., & Sasmito, B. (2012). Analisa Spasial Dinamika Morfometri Waduk Menggunakan Data Satelit Multi Temporal Di Waduk Rawa Pening Provinsi Jawa Tengah. Jurnal Geodesi Undip, 1(1).
Haryani, G. S. (2013). Kondisi Danau di Indonesia dan Strategi Pengelolaannya. Prosiding Pertemuan Ilmiah Tahunan MLI I, 2, 1–19.
Heriza, D., Sukmono, A., & Bashit, N. (2018). Analisis perubahan kualitas perairan Danau Rawa Pening periode 2013, 2015 dan 2017 dengan menggunakan data citra Landsat 8 multitemporal. Jurnal Geodesi Undip, 7(1), 79-89.
Kalkan, K., & Maktav, M. D. (2018). A cloud removal algorithm to generate cloud and cloud shadow free images using information cloning. Journal of the Indian Society of Remote Sensing, 46(8), 1255-1264.
Loukika, K. N., Keesara, V. R., & Sridhar, V. (2021). Analysis of Land Use and Land Cover Using Machine Learning Algorithms on Google Earth Engine for Munneru River Basin, India. Sustainability, 13(24), 13758.
Mahmud, S. L., Achmad, N., & Panigoro, H. S. (2020). Revitalisasi Danau Limboto dengan Pengerukan Endapan di Danau: Pemodelan, Analisis, dan Simulasinya. Jambura Journal of Biomathematics (JJBM), 1(1), 31-40.
Patel, H. H., Prajapati, P. (2018). Study and analysis of decision tree based classification algorithms. International Journal of Computer Sciences and Engineering, 6(10), 74-78.
Sanjoto, T. B., Sidiq, W. A. B. N., & Nugraha, S. B. (2020). Land cover change analysis to sedimentation rate of Rawapening Lake. GEOMATE Journal, 18(70), 294-301.
Soewandita, H. (2017). Studi Ekologi Lahan Koridor Sungai dan Status Kualitas Penggunaan Lahan di Wilayah DAS Rawapening. Jurnal Alami: Jurnal Teknologi Reduksi Risiko Bencana, 1(1), 33-42.
Suawa, P. J., Pioh, N. R., & Waworundeng, W. (2021). Manajemen Pengelolaan Dana Revitalisasi Danau Tondano Oleh Pemerintah Kabupaten Minahasa (Studi Kasus Di Balai Wilayah Sungai Sulawesi). GOVERNANCE, 1(2).
Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164, 152-170
Tri, T. 2021. Kembalikan Fungsi Tampungan Air, Kementerian PUPR Lanjutkan Penanganan 8 Danau Kritis di Indonesia. Accessed from pu.go.id.
USGS. (2022). What sensors does the Landsat 9 satellite carry? Accessed from
Yu, Z., Di, L., Yang, R., Tang, J., Lin, L., Zhang, C., ... & Sun, Z. (2019). Selection of Landsat 8 OLI Band Combinations for Land Use and Land Cover Classification. In 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics) (pp. 1-5). IEEE
- Abstract viewed - 945 times
- PDF downloaded - 802 times
Affiliations
Trida Ridho Fariz
Environmental Science, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Semarang, Indonesia.
Sapta Suhardono
Center for Space and Remote Sensing Research (CSRSR), National Central University, Taiwan
Habil Sultan
Environmental Science, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Semarang, Indonesia.
Dwi Rahmawati
Environmental Science, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Semarang, Indonesia.
Erma Zakiy Arifah
Environmental Science, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Semarang, Indonesia.
Land Cover Mapping in Lake Rawa Pening Using Landsat 9 Imagery and Google Earth Engine
Vol 2 No 1 (2022): Journal of Environmental and Science Education : April 2022
Submitted: Mar 31, 2022
Published: Apr 23, 2022
Abstract
Lake Rawa Pening, in Semarang Regency, is one of the super lakes of revitalization priority. Lake revitalization is an activity to restore the natural function of the lake as a water reservoir through lake dredging, cleaning of invasive alien plants, and land use planning. This makes land use and land cover information in Lake Rawa Pening useful for formulating policy strategies related to revitalization. This study will discuss land cover mapping in Lake Rawa Pening. Mapping using Landsat 9 Imagery and machine learning on Google Earth Engine (GEE). Machine Learning used in this study is CART and RF. The research result shows that the land cover map with the best accuracy is obtained from machine learning RF with an overall accuracy of around 0.78, while CART machine learning is approximately 0.76. The overall accuracy values for CART and RF are not much different because they are both decision tree-based machine learning. This research needs to be developed using cloud masking, comparing image transformations, and comparing its predecessor data, namely Landsat 8. This is useful for providing representative land cover data as the basis for the policy of revitalizing Lake Rawa Pening.