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Abstract 

One of the unsolved problems in mathematics especially for the theory of ring and ideal is Kothe’s conjecture. 

It stated whether if a ring R has no nil ideal except {0} then R has no one-sided nil ideal except {0}. This 

question is simple, but very complicated to be solved. Mathematicians developed some equivalent statements to 

Kothe’s conjecture to simplify this conjecture. Although this conjecture has proven for some rings, but until now 

it still open for general ring, especially for non-commutative ring. The purpose of this paper is to study about 

Kothe’s conjecture for some rings. Based on literature study and observation, we conclude that Kothe’s 

conjecture is true for commutative ring. In additional results, we state the counterexample of the invers of 

Kothe’s conjecture and study more deeply in some non-commutative rings, those are 𝑄(ℝ) and matrix ring. The 

result is positive solution for some spesific case of non-commutative rings. 
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1.  Introduction 

The study of abstract algebra became increasingly developed with the introduction of the concept of ring 

and ideal. The ideal concept is motivated by the need to define a ring factor. This leds to the need for a 

concept analogous to the normal subgroup but with two binary operations as defined in the ring. According 

to Judson & Beezer (2015) and Fraleigh (1988), 𝐼 is an ideal of ring 𝑅 when it satisfies following conditions, 

those are: (1) I is a subring of R; (2) for every 𝑎 in I, r in R implies ar in I; and (3) for every 𝑎 in I and r in 

R implies ra in I. If just one of (2) or (3) is satisfied, then we called I as one-sided ideal. According to 

Smoktunowicz (2006) and Ferrero (2001), an element 𝑎 in ring 𝑅 is said to be nilpotent if there exists 

natural number 𝑛 such that 𝑎𝑛 = 0. Ring R is said to be nil ring if all of this element are nilpotent. The idea 

of nil ideal is similar to the nil ring definition. 

Kothe’s conjecture is a basic question related to nil ideal. According to Hadas (1996), Smoktunowicz 

(2006), and Ferrero (2001), Kothe’s conjecture stated that if ring 𝑅 has no nil ideal except {0}, then ring 𝑅 

has no one-sided nil ideal except {0}. Altough this question is simple, but it is not simple to solve. It was 

proposed about 90 years ago and still open until now.  

There are some equivalent sentences to Kothe’s conjecture that have published to simplify and make 

another approach to solve Kothe’s conjecture. Some of those sentences are applicable to solve this 

conjecture for some non-commutative rings, but until now there is not generalized yet, especially in the 

case of non-commutative rings. Consequently, we still don't understand the general applicability of this 

conjecture. Since this conjecture is fundamental to our study in abstract algebra, it needs some specific 

observation in some non-commutative rings. More specific observations not only help not to miss (or even 

find) counter examples, but also help to generalize and explore special cases related to Kothe’s conjecture. 

We can collect a lot of informations related to Kothe’s conjecture and find the connections between them. 

Based on those arguments, the objectives of this paper are to explain the applicability of  Kothe’s conjecture 

for some rings. 
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2.  Discussion 

There are some equivalent sentences to Kothe’s conjecture that have established to simplify and make 

another approach to solve Kothe’s conjecture. According to Smoktunowicz (2006) and Ferrero (2001) the 

following statements are equivalent to Kothe’s conjecture: (1) the sum of two right (left) ideals in any ring 

is nil; (2) for every nil ring 𝑅, the ring 𝑀𝑛(𝑅) is nil; (3) for every nil ring 𝑅, the polynomial ring 𝑅[𝑥] over 

𝑅 is Jacobson radical; (4) every ring which is sum of a nilpotent subring and a nil subring must be nil; and 

(5) for every nil ring 𝑅, the polynomial ring 𝑅[𝑥] over 𝑅 is not left primitive. Based on those statements, 

we can extend our understanding to Kothe’s conjecture and check some rings in several ways.  

Before we continue to explore more, we have to state some interesting facts about ideal in some rings. 

It is well known that the ideal of any field 𝐹 are just {0} and 𝐹. This is because of the fact from definition 

of ideal, that every ideal 𝐼 of ring 𝑅 contains unit, then 𝐼 = 𝑅. We continue to study more in matrix ring. 

According to Sands (1956), for every ring 𝑅 and 𝐼 is ideal of 𝑅, then 𝑀𝑛(𝐼) is ideal of 𝑀𝑛(𝑅). The proof is 

straightforward from the definition of ideal. Furthermore, he also stated about the maximal and prime ideal 

in 𝑀𝑛(𝑅). The prime ideal in 𝑀𝑛(𝑅) is set 𝑀𝑛(𝐴) such that 𝐴 is prime ideal of 𝑅. Let 𝐴 be a maximal ideal 

in a ring 𝑅, then 𝑀𝑛(𝐴) is a maximal ideal in 𝑀𝑛(𝑅) if and only if 𝐴 is a prime ideal in 𝑅.  

More informations about ideal in 𝑀𝑛(𝑅) have published by Newman & Pierce (1969), that is if 𝑅 is 

principal ideal ring then every ideal of 𝑀𝑛(𝑅) is principal. Furthermore, every ideal in 𝑀𝑛(𝑅) is in the form 

𝑀𝑛(𝐼) for some ideal 𝐼 in 𝑅. According to Radjabalipour & Yahaghi (2007), if 𝐷 is division ring, then this 

following statements are equivalent, (1) 𝐷 is a division ring, (2) left ideal of 𝑀𝑛(𝐷) is the set of matrices 

in 𝑀𝑛(𝐷) which first 𝑟 columns are arbitrary elements of 𝐷 and the remaining 𝑛 − 𝑟 columns are all zeros, 

for some non-negative integer 𝑟 ≤ 𝑛, and (3) right ideal of 𝑀𝑛(𝐷) is the set of matrices in 𝑀𝑛(𝐷) which 

first 𝑟 rows is arbitrary elements of 𝐷 and the remaining 𝑛 − 𝑟 rows are all zeros, for some non-negative 

integer 𝑟 ≤ 𝑛. 

There are some addition results related to Kothe’s conjecture: 

2.1.  Kothe’s conjecture is true for commutative ring 

Proof: 

Let 𝑅 be commutative ring. We are going to prove the contraposition of Kothe’s conjecture, that is if 𝑅 has 

one-sided nil ideal except {0}, then 𝑅 has nil ideal except {0}. Without lost of generality, we assume that 

this ideal is left ideal 𝐼𝐿  of 𝑅. Since 𝐼𝐿  is nil ideal and 𝐼𝐿 ≠ {0}, then there exists nilpotent element 𝑎 ≠ 0 in 

𝐼𝐿 . But, since 𝑅 is commutative ring, then 𝐼𝐿  is also right ideal of 𝑅. Consequently, 𝐼𝐿  is nil ideal of 𝑅 except 

{0}. 

It is an obvious fact from the properties of commutative ring, that is if 𝑅 is a commutative ring then 

every left ideal of 𝑅 is also right ideal of 𝑅. This fact leads us to the conclusion that Kothe’s conjecture is 

always true for all commutative rings. Obviously, this conjecture is true for every field, integral domain, 

and Euclidean domain.  

2.2.  Kothe’s conjecture is true for real quaternion 

It makes sense to do more observation to non-commutative rings, since we have known that Kothe’s 

conjecture is always true for every commutative ring. One example of non-commutative ring is real 

quaternion, denoted by 𝑄(ℝ). We stated 𝑄(ℝ) = {𝑎0 + 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘|𝑎0, 𝑎1, 𝑎2, 𝑎3 ∈ ℝ} and has an 

additive rule, that is 𝑖𝑗 = 𝑘, 𝑗𝑘 = 𝑖, 𝑘𝑖 = 𝑗, 𝑗𝑖 = −𝑘, 𝑘𝑗 = −𝑖, 𝑖𝑘 = −𝑗, 𝑖2 = 𝑗2 = 𝑘2 = −1. We are going 

to prove that Kothe’s conjecture is true for 𝑄(ℝ). 

Proof: 

Take any 𝑥, 𝑦 in 𝑄(ℝ) which is 𝑥𝑦 = 0. Clear that |𝑥𝑦| = 0 = |𝑥||𝑦|. Because |𝑥|, |𝑦| are real numbers 

and ℝ is an integral domain, then |𝑥| = 0 or |𝑦| = 0. Consequently, it must be 𝑥 = 0 or 𝑦 = 0. This fact 

leads to the conclution that 𝑄(ℝ) has no zero divisor. In other word, for every 𝑎 ≠ 0 in 𝑄(ℝ), a non zero 

element 𝑏 in 𝑄(ℝ) such that 𝑎𝑏 = 0 is not exists. This statement implies that there is no nilpotent element 

in 𝑄(ℝ) except 0. Thus, 𝑄(ℝ) does not have one sided nil ideal except {0} and 𝑄(ℝ) does not have nil 

ideal except {0}. If we want to disprove the truth of Kothe’s conjecture in 𝑄(ℝ), then we have to show that 

there is no nil ideal except {0} in 𝑄(ℝ) and there exists one sided nil ideal except {0} in 𝑄(ℝ). But it is 

impossible since the only nilpotent element in 𝑄(ℝ) is 0. 



Y. Prasetia 757 

 

PRISMA 2021, Vol. 4, 755-759 

2.3.  If 𝐷 is division ring then Kothe’s conjecture is true for 𝑀𝑛(𝐷)  

I have stated some important results about ideals in matrix ring that I want to use in order to see the 

applicability of Kothe’s conjecture for matrix ring in the beginning of our discussion, those are, (1) every 

ideal in 𝑀𝑛(𝑅) is in the form 𝑀𝑛(𝐼) for some ideal 𝐼 in 𝑅, (2) for division ring 𝐷, left ideal of 𝑀𝑛(𝐷) is the 

set of matrices in 𝑀𝑛(𝐷) which first 𝑟 columns are arbitrary elements of 𝐷 and the remaining 𝑛 − 𝑟 columns 

are all zeros, for some non-negative integer 𝑟 ≤ 𝑛, and (3) for division ring 𝐷, right ideal of 𝑀𝑛(𝐷) is the 

set of matrices in 𝑀𝑛(𝐷) which first 𝑟 rows is arbitrary elements of 𝐷 and the remaining 𝑛 − 𝑟 rows are all 

zeros, for some non-negative integer 𝑟 ≤ 𝑛. 

Proof: 

It is clear that every non zero element in 𝐷 is unit. Consequently, the ideal of 𝐷 is only {0} and 𝐷 itself. 

According to the property (1), we conclude that the ideals of 𝑀𝑛(𝐷) are {0𝑛} and 𝑀𝑛(𝐷). Of course 𝑀𝑛(𝐷) 

is not nil ideal since if we choose 𝐴 in 𝑀𝑛(𝐷) such that 𝑐11 ≠ 0 in 𝐴, then 𝐴𝑛 ≠ 0, for all natural number 

𝑛. Thus, 𝑀𝑛(𝐷) has no other nil ideal except {0𝑛}. According to the properties (2) and (3), we are going to 

set non zero left ideal 𝐼𝐿  and right ideal 𝐼𝑅 straightforward from those properties. Choose element 𝐿 in 𝐼𝐿  

such that 𝑐𝑖1 ≠ 0 for 𝑖 = 1, 2, …, 𝑛. It is clear that 𝐿𝑚 ≠ 0 for all natural number 𝑚. It concludes that there 

is no left nil ideal in 𝑀𝑛(𝐷) except {0𝑛}. Similarly, we choose element 𝑅 in 𝐼𝑅 such that 𝑐1𝑖 ≠ 0 for 𝑖 = 1, 

2, …, 𝑛. It is clear that 𝑅𝑚 ≠ 0 for all natural number 𝑚. It concludes that there is no right nil ideal in 

𝑀𝑛(𝐷) except {0𝑛}. Thus, there is no one sided nil ideal in 𝑀𝑛(𝐷) except {0𝑛}. This statement proves the 

truth of Kothe’s conjecture in 𝑀𝑛(𝐷). Consequently, Kothe’s conjecture is also true for 𝑀𝑛(𝐹) where 𝐹 is 

a field, 𝑀𝑛(𝑄(ℝ)), and 𝑀𝑛(ℝ). 

2.4.  The inverse of Kothe’s conjecture is not true 

The inverse of Kothe’s conjecture stated that if ring 𝑅 has nil ideal except {0}, then 𝑅 has one-sided nil 

ideal except {0}. We will prove that this statement is false by giving a very spesific counter example. 

Proof: 

Setting ring 𝑅 = {(
𝑎 𝑏
0 𝑐

) |𝑎, 𝑏, 𝑐 ∈ ℝ} and 𝐼 = {(
0 𝑥
0 0

) |𝑥 ∈ ℝ} ideal of 𝑅. Take any 𝐴 in 𝐼. Clear 

that 𝐴 = (
0 𝑝
0 0

) for some 𝑝 ∈ ℝ. But, we can see that 𝐴2 = 02, so 𝐴 is nilpotent. Clear that 𝑅 has nil ideal 

except {0𝑛}, that is 𝐼. According to the properties (2) and (3) from the previous explanation, it makes sense 

to define one-sided ideals 𝐾1 = {(
𝑥 𝑦
0 0

) |𝑥, 𝑦 ∈ ℝ} and 𝐾2 = {(
0 0
0 𝑦

) |𝑥, 𝑦 ∈ ℝ} are right ideal of 𝑅. 

This is because any ideal of ring must be an ideal of its subring. We consider the fact that 𝑅 is subring of 

𝑀𝑛(ℝ). But it’s easy to check that 𝐾1 is also left ideal in 𝑅, thus 𝐾1 is ideal of 𝑅. Obviously, 𝐾2 is not one-

sided nil ideal, since (
0 0
0 1

) is not nilpotent elements. But, it is possible to find other one-sided ideal of 𝑅 

such that not ideal of 𝑀𝑛(ℝ). Since it is the special case of matrix ring, we have to collect all subsets of 𝑅 

such that they have the possibility to become ideal of 𝑅. 

It is important that we never want to consider the case of  𝑆 = {(
𝑎 𝑏
0 𝑐

) |𝑎, 𝑏, 𝑐 ∈ 𝑃, 𝑃 ⊂ ℝ} since ℝ 

has no other ideal except {0} and ℝ itself, so 𝑆 never be an ideal of 𝑅. Thus we want to consider the 

remaining subsets of 𝑅 as follow: 

▪ The subsets contain all of matrices in 𝑅 that one place in 𝑐𝑖𝑗  replaced by 0. 

We set the subsets of 𝑅 by 𝐾3 = {(
𝑥 𝑥
0 𝑥

) |𝑥 ∈ ℝ}, 𝐾4 = {(
𝑥 𝑦
0 𝑦) |𝑥, 𝑦 ∈ ℝ}, 𝐾5 =

{(
𝑥 𝑥
0 𝑦) |𝑥, 𝑦 ∈ ℝ}, and 𝐾6 = {(

𝑥 𝑦
0 𝑥

) |𝑥, 𝑦 ∈ ℝ}. It is easy to check by take arbitrary element from 

those sets and multiply by arbitrary element in 𝑅 from both sides. We can conclude that no one of those 

sets become one-sided ideal of 𝑅 since they are not close under the multiplication with some elements 

in 𝑅. 

▪ The subsets contain all of matrices in 𝑅 that two places in 𝑐𝑖𝑗  replaced by 0 except 𝐾1. 

We set the subsets of 𝑅 by 𝐾7 = {(
𝑥 0
0 𝑦

) |𝑥, 𝑦 ∈ ℝ}, 𝐾8 = {(
𝑥 0
0 𝑥

) |𝑥 ∈ ℝ}, 𝐾9 =

{(
0 𝑥
0 𝑥

) |𝑥, 𝑦 ∈ ℝ}, 𝐾10 = {(
0 𝑥
0 𝑦

) |𝑥, 𝑦 ∈ ℝ}, and 𝐾11 = {(
𝑥 𝑥
0 0

) |𝑥 ∈ ℝ}. It is easy to check by take 



Y. Prasetia 758 

 

PRISMA 2021, Vol. 4, 755-759 

arbitrary element from those sets and multiply by arbitrary element in 𝑅 from both sides. We can 

conclude that 𝐾9 is right ideal of 𝑅, 𝐾10 is ideal of 𝑅, and  𝐾11 is left ideal of 𝑅. Observe that 𝐾9 and 

𝐾11 are not one-sided nil ideal since  (
0 1
0 1

) and (
1 1
0 0

) are not nilpotent.  

▪ The subsets contain all of matrices in 𝑅 that three places in 𝑐𝑖𝑗  replaced by 0 except 𝐾2 and 𝐼. 

We set the subset of 𝑅 by 𝐾12 = {(
𝑥 0
0 0

) |𝑥 ∈ ℝ}. It is easy to check by take arbitrary element from 

𝐾12 and multiply by arbitrary element from 𝑅 from both sides. We conclude that 𝐾12 is left ideal of 𝑅 

and it is not one sided nil ideal of 𝑅 since (
1 0
0 0

) is not nilpotent. 

Consequently, there is nil ideal 𝐼 in 𝑅 except {0}, but there is no one sided nil ideal in 𝑅 except {0}. 

Thus, 𝑅 is a counterexample of the inverse of Kothe’s conjecture. 

2.5.  Kothe’s conjecture is true for 𝑀𝑛(𝑆), where 𝑆 is non zero nil subring of  ℤ𝑐  

In this case, of course we don’t want to consider for prime number 𝑐, since  ℤc will be an integral domain 

and there is no nonzero nilpotent element in every integral domain. Thus, we choose nonprime 𝑐. Since 𝑐 

is nonprime, then we can collect some zero divisors of ℤc which are nilpotent. We define 𝑆 as a collection 

of all nilpotent element in ℤc. In order to reach our goal, we have to fullfill the following conditions: 

▪ Lemma 1: every product of nilpotent element in commutative ring 𝑅 is always nilpotent. 

Proof: 

Let 𝑝, 𝑞 are nilpotent elements in 𝑅. Clear that there exists natural numbers 𝑚, 𝑛 such that 𝑝𝑛 = 0 and 

𝑞𝑚 = 0. Choose 𝑟 = min{𝑚, 𝑛}. Consequently, we get (𝑝𝑞)𝑟 = 𝑝𝑟𝑞𝑟 = 0.  Thus, the product of every 

nilpotent element in ℤc (commutative ring) is nilpotent. 

▪ Lemma 2: every sum of nilpotent element in commutative ring 𝑅 is always nilpotent. 

Proof: 

Let 𝑝, 𝑞 are nilpotent elements in 𝑅. Clear that there exists natural numbers 𝑚, 𝑛 such that 𝑝𝑛 = 0 and 

𝑞𝑚 = 0. Choose 𝑟 such that for 𝑖 = 0,1,2, … , 𝑟, 𝑟 − 𝑖 ≥ max{𝑚, 𝑛} or 𝑖 ≥ max{𝑚, 𝑛}. In other word, 

when 𝑖 ≈ ⌊
𝑟

2
⌋, 𝑟 − 𝑖 ≥ max{𝑚, 𝑛} or 𝑖 ≥ max{𝑚, 𝑛}. Then, by using binomial expansion, we see that 

(𝑝 + 𝑞)𝑟 = ∑ (
𝑟
𝑖
) 𝑝𝑖𝑞𝑟−𝑖𝑟

𝑖=0 = 0, since the product of 𝑝𝑖𝑞𝑟−𝑖 is always 0 for each 𝑖 by our 

consideration. Thus, every sum of nilpotent element in 𝑅 is nilpotent. 

▪ Lemma 3: every product of nilpotent element and arbitrary element in commutative ring 𝑅 is always 

nilpotent. 

Proof: 

Take any element 𝑝 in 𝑆 and 𝑞 in 𝑅. Clear that there exists natural numbers 𝑛 such that 𝑝𝑛 = 0. Since 

𝑅 is commutative ring, then (𝑝𝑞)𝑛 = 𝑝𝑛𝑞𝑛 = 0. 𝑞𝑛 = 0. Thus, every product of nilpotent element and 

arbitrary element in commutative ring 𝑅 is always nilpotent. 

▪ 𝑆 is ideal of 𝑅. 

Proof: 

We want to prove stronger structure, since every ideal is always subring but not every subring is ideal. 

Thus, by proving 𝑆 is ideal of 𝑅, we get 𝑆 is subring of 𝑅. By lemma 2, we also deduce that every 𝑎, 𝑏 

in 𝑆, then 𝑎 − 𝑏 always in 𝑆. By lemma 3, since ℤn is commutative ring, then we can deduce that every 

𝑎 in 𝑆 and 𝑟 in 𝑅, then 𝑎𝑟 and 𝑟𝑎 are always in 𝑆. Thus, 𝑆 is ideal of 𝑅. Based on those arguments, we 

can say that 𝑆 is nil subring of 𝑅.  

▪ 𝑀𝑛(𝑆) is nil ring. 

Proof: 

We use the equivalent statements to Kothe’s conjecture that is if 𝑅 is nil ring then 𝑀𝑛(𝑅) is nil. Since 

Kothe’s conjecture is always true for every commutative ring and 𝑆 is commutative ring, then Kothe’s 

conjecture is true for 𝑆. Because 𝑆 is nil ring and Kothe’s conjecture is true for 𝑆, then 𝑀𝑛(𝑆) is also nil 

ring. 

▪ 𝑀2(𝑀𝑛(𝑆)) is nil ring. 

This is the final statement that we have to prove in order to reach our goal. Observe that each element 

of 𝑀2(𝑀𝑛(𝑆)) is in the form 𝑃 = (
𝐴1 𝐴2

𝐴3 𝐴4
), where 𝐴1, 𝐴2, 𝐴3, 𝐴4 are in 𝑀𝑛(𝑆), (clear that all of them 
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are nilpotent elements). We are going to claim that there exists some 𝑀 such that 𝑃𝑀 = 02. We start 

with identification of 𝑆, that is if 𝑐 = 𝑝1
𝛼1𝑝2

𝛼2𝑝3
𝛼3 … 𝑝𝑚

𝛼𝑚, where 𝑝𝑖  are primes, then clear that the set 𝑆 =

{∏ 𝑝𝑖
𝛽𝑖𝑚

𝑖=1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

| 1 ≤ 𝛽𝑖 ≤ 𝛼𝑖}. Clear that for some natural number 𝑡, 𝑃𝑡 = (
𝐵1 𝐵2

𝐵3 𝐵4
), with each of 𝐵𝑖  is a 

matrix over 𝑆. We know that each 𝐵𝑖  is the sum of some matrices in 𝑀𝑛(𝑆). Clear that all entries in 𝐵𝑘 

are in the form ∏ 𝑝𝑖
𝜔𝑖𝑚

𝑖=1 𝐾𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , for some natural number 𝐾𝑖. When we multiply 𝐵𝑘 and 𝐵𝑙  in 𝑀𝑛(𝑆), then 

each entry of the product of 𝐵𝑘𝐵𝑙  is in the form ∏ 𝑝𝑖
𝛾𝑖𝑚

𝑖=1 𝑈𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , for some natural number 𝑈𝑖, which 𝛾𝑖 > 𝜔𝑖  

for 𝑖 = 1,2,3, … , 𝑚. Again, when we add 𝐵𝑘 and 𝐵𝑙  is 𝑀𝑛(𝑆), we add elements 𝑐𝑖𝑗  in 𝐵𝑘 and 𝐵𝑙  which 

is ∏ 𝑝𝑖

𝜃𝑘𝑖𝑅𝑘𝑖
𝑚
𝑖=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 + ∏ 𝑝𝑖

𝜃𝑙𝑖𝑅𝑙𝑖
𝑚
𝑖=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 = ∏ 𝑝𝑖

min(𝜃𝑘𝑖,𝜃𝑙𝑖)𝑚
𝑖=1 𝑄𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
, for some positive integer 𝑄𝑖 . Then, we choose a 

great value of 𝑀 such that each entry of  𝐵𝑖’s in 𝑃𝑀 is  ∏ 𝑝𝑖
𝜇𝑖𝑉𝑖

𝑚
𝑖=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, for some positive integer 𝑉𝑖 such that 

each 𝜇𝑖 ≥ 𝛼𝑖, for 𝑖 = 1,2, … , 𝑚. In this condition, we get 𝑃𝑀 = 0. Consequently, 𝑀2(𝑀𝑛(𝑆)) is nil ring.  

In the end of this explanation, we want to state that there is no guarantee that the product of nilpotent 

element in non-commutative ring is always nilpotent. But, in this special case it satisfies this property 

because 𝑀𝑛(𝑆) is nil ring. In general, according to Sullivan (2008) and Wu (1987), when 𝑛 ≥ 3, then any 

singular matrix can be expressed as a product of nilpotent matrices.  

3.  Conclusion 

According to our discussion, we conclude that Kothe’s conjecture is true for commutative rings, real 

quaternion, 𝑀𝑛(𝐷) where 𝐷 is a division ring, and 𝑀𝑛(𝑆) where 𝑆 is collection of all nilpotent elements in 

ℤc and 𝑐 is composit natural number. We also state the counterexample of the inverse of Kothe’s conjecture 

by choosing very spesific matrix ring. There are some suggestions to future study about Kothe’s conjecture. 

First, we have to explore more in non-commutative rings. Second, we have to pay more attention if we 

work in very spesific case, because if 𝐼 is the only ideal of 𝑅, and 𝑆 is subring of 𝑅, then 𝐼 is possibly not 

the only ideal of 𝑆. 
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