[1] Radji, M. 2006. Avian Influenza A (H5N1): Patogenesis, Pencegahan dan Penyebaran pada Manusia. Review Artikel Majalah Ilmu Kefarmasian, 3(2):55-65.
[2] National Science Foundation. 2015. Mathematical Modeling of Disease Outbreak, BioMath. USA: COMAP, Inc. In conjunction with DIMACS, Rutgers University.
[3] Sya’baningtyas, FS., M. Chotim., M. Kharis. 2013. Model Matematikawabah Flu burung Pada Populasi Unggasdengan Pengaruh Vaksinasi. Unnes Journal of Mathematics, 2(2):127-132.
[4] World Health Organization (WHO). 2017. Cumulative Number of Confirmed Human Cases for Avian Influenza A (H5N1) reported to WHO, 2003-2017. [Diakses di http://www.who.int/influenza/human_animal_interface/2017_07_25_tableH5N1.pdf pada tanggal 12 Februari 2018].
[5] Lashari, A. A. 2016. Optimal Control of an SIR Epidemic Model with a Saturated Treatment. Applied Mathematics & Information Sciences An International Journal, 10(1):185-191.
[6] Kharis, M & R Arifudin. 2017. Mathematical Model of Seasonal Influenza with Treatment in Constant Population. Journal of Physics. 824 012034 doi: 10.1088/012034
[7] Setiyono, A & Nurliani, B. 2013. Potensi Tanaman Obat untuk Penanggulangan Flu burung: Uji In Vitro pada Sel Vero. Jurnal Sain Veteriner, 31(1):27-34.
[8] Tasmi & Nuraini, N. 2016. Optimal Vaccination and Treatment Schedules in a Deterministic Avian influenza Model. J. Math. Fund. Sci, 48(2):164-177.
[9] Sompet, B, et al. 2017. Antiviral activity of five Asian medicinal pant crude extracts against highly pathogenic H5N1 avian influenza virus. Asian Pacific Journal of Tropical Medicine, http://dx.doi.org/10.1016/j.apjtm.2017.08.010.
[10] Iwami S., Takeuchi, Y., Liu, X. 2007. Avian-Human Influenza Epidemic Model.Mathematical Biosciences, doi:10.1016/j.mbs.2006.08.001.
[11] Siswanto., Supriyono., Wuryanto. 2013. Model Matematika Penyebaran Flu burung dari Unggas ke Manusia. Unnes Journal of Mathematics, 2(1):32-38.
[12] Modnak, C. 2017. Optimal Treatment Strategy of An Avian Influenza Model With Latency. International Journal of Biomathematics, 10(5):1-21.
[13] Chong, N.S., Jean M.T., Robert J.S. 2014. A Mathematical Model Of Avian Influenza With Half-Saturated Incidence. Theory Biosci, DOI 10.1007/s12064-013-0183-6
[14] Putri, D.P. & Herri, S. 2016. Kajian Pemodelan Matematika terhadap Penyebaran Virus Avian Influenza Tipe-H5N1 pada Populasi Unggas. Teorema, Jurnal Matematika dan Pendidikan Matematika FKIP-Universitas Galuh Ciamis, 3(2):501-516.
[15] Kimbir, A.R, P.N Okolo. 2014. A Model Analysis for the Transmission Dynamics of Avian Influenza. Mathematical Theory and Modelling, 4(13):15-28.
[16] Gulbudak H & M. Martcheva. 2013. Forward Hysteresis and Backward Bifurcation Caused By Culling in An Avian Influenza Model. Math Biosciences,doi:http://dx.doi.org/10.1016/j.mbs.2013.09.001
[17] Pongsumpun, P & Lamwong, J. 2016. Mathematical Model for The Transmission of Avian Influenza by Age Gorup of Patients in Thailand. International Journal of Multidiscriplinary Academic Research. 4(1):12-23.
[18] Enatsu, Y., Messina, E., Nakata, Y., Muroya, Y., Russo, E., & Veccio, A. 2012. Global Dynamics of a Delayed SIRS Epidemic Models With a Wide Class of Non Linear Incidence Rates. Journal of Applied Mathematics and Computing, DOI: 10.1007/s12190-011-0507-y
[19] Derouich, M. & Boutayeb. 2008. An Avian Influenza Mathematical Model. Applied Mathematical Sciences, 2(36):1749-1760.
[20] Rahmalia, D. 2015. Pemodelan Matematika dan Analisis Stabilitas dari Penyebaran Penyakit Flu burung. Jurnal UJMC, 1(1):11-19.