Babaei, A., Jafari, H., Banihashemi, S., & Ahmadi, M. (2021). Mathematical analysis of a stochastic model for spread of Coronavirus. Chaos, Solitons and Fractals, 145. https://doi.org/10.1016/j.chaos.2021.110788
Dan, J. M., Mateus, J., Kato, Y., Hastie, K. M., Yu, E. D., Faliti, C. E., Grifoni, A., Ramirez, S. I., Haupt, S., Frazier, A., Nakao, C., Rayaprolu, V., Rawlings, S. A., Peters, B., Krammer, F., Simon, V., Saphire, E. O., Smith, D. M., Weiskopf, D., … Crotty, S. (2021). Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science, 371(6529). https://doi.org/10.1126/science.abf4063
Diagne, M. L., Rwezaura, H., Tchoumi, S. Y., & Tchuenche, J. M. (2021). A Mathematical Model of COVID-19 with Vaccination and Treatment. Computational and Mathematical Methods in Medicine, 2021. https://doi.org/10.1155/2021/1250129
Gennaro, F. di, Pizzol, D., Marotta, C., Antunes, M., Racalbuto, V., Veronese, N., & Smith, L. (2020). Coronavirus diseases (COVID-19) current status and future perspectives: A narrative review. In International Journal of Environmental Research and Public Health (Vol. 17, Issue 8). MDPI AG. https://doi.org/10.3390/ijerph17082690
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
Kemenkes. (2020). Keputusan Menteri Kesehatan Republik Indonesia Nomor Hk.01.07/Menkes/413/2020 tentang Pedoman Pencegahan Dan Pengendalian Coronavirus Disease 2019 (Covid-19).
Kemenkes. (2021a). Keputusan Menteri Kesehatan RI No HK.01.07/MENKES/6688/2021 tentang Pelaksanaan Vaksinasi Corona Virus Disease 2019 (Covid-19) Bagi Anak Usia 6 (Enam) Sampai Dengan 11 (Sebelas) Tahun.
Kemenkes. (2021b). Peraturan Menteri Kesehatan RI No. 10 Tahun 2021 TENTANG Pelaksanaan Vaksinasi dalam Rangka Penanggulangan Pandemi Corona Virus Disease 2019 (Covid-19).
Kemenkes. (2021c). Kepmenkes No. HK.01.07-MENKES-4641-2021.
Moghadas, S. M., Vilches, T. N., Zhang, K., Nourbakhsh, S., Sah, P., Fitzpatrick, M. C., & Galvani, A. P. (2021). Evaluation of COVID-19 vaccination strategies with a delayed second dose. PLoS Biology, 19(4). https://doi.org/10.1371/journal.pbio.3001211
Musa, S. S., Qureshi, S., Zhao, S., Yusuf, A., Mustapha, U. T., & He, D. (2021). Mathematical modeling of COVID-19 epidemic with effect of awareness programs. Infectious Disease Modelling, 6, 448–460. https://doi.org/10.1016/j.idm.2021.01.012
Ndii, M. Z. (2018). Pemodelan Matematika Dinamika Populasi dan Penyebaran Penyakit Teori Aplikasi, dan Numerik (Cetakan Pertama). Deepublish (CV BUDI UTAMA).
Paul, A. K., & Kuddus, M. A. (2022). Mathematical analysis of a COVID-19 model with double dose vaccination in Bangladesh. Results in Physics, 35. https://doi.org/10.1016/j.rinp.2022.105392
Satuan Tugas Penanganan COVID-19. (2022). Peta Sebaran Covid-19. https://covid19.go.id/peta-sebaran
Tang, B., Xia, F., Tang, S., Bragazzi, N. L., Li, Q., Sun, X., Liang, J., Xiao, Y., & Wu, J. (2020). The effectiveness of quarantine and isolation determine the trend of the COVID-19 epidemics in the final phase of the current outbreak in China. International Journal of Infectious Diseases, 95, 288–293. https://doi.org/10.1016/j.ijid.2020.03.018
Thevarajan, I., Nguyen, T. H. O., Koutsakos, M., Druce, J., Caly, L., Sandt, C. E. van de, Jia, X., Nicholson, S., Catton, M., Cowie, B., Tong, S. Y. C., Lewin, S. R., & Kedzierska, K. (2020). Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat Med, 26, 453–455. https://doi.org/https://doi.org/10.1038/s41591-020-0819-2
WHO. (2020). Evidence to recommendations for COVID-19 vaccines: Evidence framework : a framework to inform the assessment of evidence and formulation of subsequent COVID-19 vaccine recommendations. https://covid-nma.com/vaccines/
Yalçın, T. Y., Topçu, D., Doğan, Ö., Aydın, S., Sarı, N., Erol, Ç., Kuloğlu, Z. E., Azap, Ö. K., Can, F., & Arslan, H. (2022). Immunogenicity after two doses of inactivated virus vaccine in healthcare workers with and without previous COVID-19 infection: Prospective observational study. Journal of Medical Virology, 94(1), 279–286. https://doi.org/10.1002/jmv.27316
Zeb, A., Alzahrani, E., Erturk, V. S., & Zaman, G. (2020). Mathematical Model for Coronavirus Disease 2019 (COVID-19) Containing Isolation Class. BioMed Research International, 2020. https://doi.org/10.1155/2020/3452402
- Abstract viewed - 76 times
- PDF downloaded - 72 times
Affiliations
Lutfia Husna Khoirunnisa
Universitas Negeri Semarang
Stevanus Budi Waluya
Universitas Negeri Semarang
A Mathematical Model of COVID-19 with Double Doses of Vaccination and Quarantine
Abstract
Covid-19 (coronavirus disease 2019) is a disease caused by a virus called SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), and began to appear at the end of 2019. One of the ways to prevent the spread of covid-19 from spreading is to provide double-dose vaccination and quarantine for individuals who can transmit covid-19 (infectious). Through this research, a mathematical model was formed for the case of the spread of covid-19 by considering the existence of double-dose vaccination, and quarantine were given to infectious. In the model formed, we get a basic reproduction number R0, and two equilibrium points, namely the disease-free equilibrium point (E0 ) that will be locally asymptotically stable when R_0<1, and the endemic equilibrium point (E* ) that will be locally asymptotically stable when R0>1. Furthermore, in the numerical simulation carried out, it is known that double doses of vaccine and quarantine can decrease the transmission of covid-19.