SINTESIS CARBON NANODOTS SULFUR (C-DOTS SULFUR) DENGAN METODE MICROWAVE

  • Handika Dany Rahmayanti Jurusan Fisika, FMIPA, Universitas Negeri Semarang, Indonesia
  • Mahardika Prasetya Aji Jurusan Fisika, FMIPA, Universitas Negeri Semarang, Indonesia
  • Sulhadi Sulhadi Jurusan Fisika, FMIPA, Universitas Negeri Semarang, Indonesia
Keywords: absorbance, C-dots, energy gap, FTIR, microwave, sulfur

Abstract

Sintesis C-Dots dengan metode microwave menggunakan bahan sulfur, urea dan citric acid telah berhasil dibuat. C-Dots disintesis pada  kondisi low (70 W). Pada masing-masing kondisi dibuat dengan variasi waktu sintesis yang berbeda-beda yaitu 5 menit, 15 menit, 25 menit, 35 menit, 45 menit dan 55 menit. Hasil sintesis C-Dots dengan variasi waktu sintesis berbeda menunjukan pergeseran warna dari kuning muda menjadi coklat tua. Emisi cahaya C-Dots yang diamati dalam cahaya UV menunjukan perpendaran warna hijau kekuningan. Meningkatnya lama waktu sintesis menyebabkan penyerapan spektrum absorbansi yang dihasilkan semakin luas dan semakin rendah nilai energi gapnya yaitu pada rentang 2,1 eV sampai 1,7 eV. Hal ini mengindikasikan bahwa efek waktu sintesis mempengaruhi sifat optik C-Dots yang dihasilkan. Dari pengukuran  spektrum transmitansi FTIR dapat teramati struktur unit C-Dots. Terdapat keberadaan gugus fungsi seperti -OH, C-H, C-O, C=C, C-N dan SH. Proses microwave menyebabkan gugus fungsi mengalami degradasi intensitas transmitansi. Secara sederhana, hasil analisis gugus fungsi dari FTIR hasil sintesis dari sulfur, urea dan citric acid melalui proses microwave mengindikasikan secara kuat bahwa terdapat C-Dots.

 

Synthesis of C-Dots using sulfur materials, urea and citric acid was successfully prepared by microwave methods. C-Dots synthesized in conditions low (70 W). In each of the conditions are prepared by the time variation of different synthesis is 5 minutes, 15 minutes, 25 minutes, 35 minutes, 45 minutes and 55 minutes. The results of the synthesis of C-Dots with different synthesis shows the time variation of light yellow color shift to dark brown. C-Dots light emission was observed in UV light yellowish green color indicates luminiscence. Increasing the length of time the synthesis of lead absorption resulting absorbance spectrum wider and lower energy value is in the range gapnya 2.1 eV to 1.7 eV. This indicates that the effect of synthesis time affect the optical properties of the resulting C-Dots. FTIR transmittance spectra of measurement can be observed structural unit C-Dots. There is the presence of functional groups like that OH, CH, CO, C = C, CN and SH. Microwave process causing degraded functional groups transmittance intensity. Simply put, the results of the analysis of the functional group of the FTIR results of the synthesis of sulfur, urea and citric acid through microwave process indicated strongly that there is a C-Dots.

References

Abdullah, M., Morimoto, T., Okuyama, K. 2003. Generating blue and red luminescence from ZnO/ply(ethylene glycol) nanocomposites prepared using an in-situ method, Advanced Functional Materials, 13(10), (800-804).

Abdulah, Mikrajuddin. 2007. Catatan kuliah: Topik Khusus Fisika Material Elektronik Material Nanostruk. Bandung : ITB

Abdullah M, et al.2008. Review : Sintesis Nanomaterial. Jurnal Nanosains & Nanoteknologi 1(2):33-57 ISSN 1979-0880

Abdullah, M. dan Khairurrijal. 2010. Karakterisasi Nanomaterial : Teori Penerapan dan Pengolahan Data. Bandung: CV. Rezeki Putera.

Baker, S.N. dan Baker, G.A. 2010. Luminescent Carbon Nanodots : Emergent Nanolight, Angew. Chem. Int. 99: 6726-6744.

Faisal N., Wang, L., Zhu, L., Meng, X., dan Xiao, F. 2013. Ascorbic Acid Assisted Green Route for Synthesis of Water Dispersible Carbon Dots, Chem. Res. Chin. Univ. 2013, 29(3), 401-403.

Jacub, Jandri. 2011. Sintesis Nanopartikel ZnO dengan Teknik Presipitai : Pengaruh Temperatur Pencampuran Prekursor terhadap Pertumbuhan Nanokristalit Oksida Anorganik. Tesis Jakarta : Universitas Indonesia.

Jaiswal, A., Ghosh Siddhartha, S., dan Chattopadhyay, A., 2012, One step synthesis of C-Dots by Microwave mediated caramelization of poly(ethylene glycol), Chem. Commun. 48 : 407–409.

Jingjing N., Hui, G., Litao W., Shuangyu, X., Yuhua. W. 2013. Facile synthesis and optical properties of nitrogen-doped carbon dots.Royal Society of Chemistry.DOI : 10.1039/c3nj01068f.

Kurniawan, Cepi. 2008. Studi Sifat Luminisens iNanopartikel CaxSr1xTiO3:RE(RE=Pr3+, Eu3+ dan Tb3+) yang Dipreparasi dengan Metode Sonokimia. Tesis. Bandung : Institut Teknologi Bandung.

Li, H., Zhenhui K., Yang L., & Lee,s. 2012. Carbon nanodots : synthesis, properties and application, Journal of Materials Chenistry. DOI: 10.1039/c2jm34690g.

Nasriah, Nasri. 2013. Sintesis Karbon Nanodots menggunakan Pemanasan Microwave untuk Aplikasi Bioimaging. Skripsi. Bandung : Universitas Islam Sunan Gunung Djati.

Masyrukan, 2013, Karakterisasi Bahan Karet untuk Keperluan Gasket Kendaraan terhadap Pengaruh Kandungan Sulfur, Prosiding Simposium Nasional RAPI XII Fakultas Teknik Universitas Muhammadiyah Surakarta ISSN 1412 9612.

Philippidis, A., Stefanakis, D., Anglos, D., Ghanotakis, D. 2013. Microwave heating of arginine yields highly fluorescent nanoparticles, J Nanoparts Res, 15:1414.

Rahmayanti, H.D., Aji, M.P., & Sulhadi. 2014. Effect of Sulfur Particles on Absorbance and the Band Gap Energy of Carbon Dots. Prosiding International Conference on Advanced Materials and Technology (ICAMST 2014) 16-17 September 2014, Solo.

Sahu, S., Birendra, B., Tapas K., Maiti & Mohapatra, S. 2012. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents, Chem. Commun. 48 : 8835–8837.

Stefanakis, D., Anglos, D., Ghanotakis, D., Philippidis, A. 2014. Synthesis of fluorescent carbon dots by a microwave heating process: structural characterization and cell imaging applications. J Nanoparts, 16:2646.

Zhai, X., Peng Z., Changjun L., Tao B., Li, W., Liming D., & Liu W. 2012. Highly luminescent carbon nanodots by microwave-assisted pyrolysis, Chem. Commun. 48 : 7955–7957.

Zhi, Y., Zhaohui, L., Minghan, X., Hao, W., Liying, Z. 2013. Controllable Synthesis of Flourescent Carbon Dots and Their Detection Application as Nanoprobes, Nano-Micro Lett.5(4) : 247-259.

Zhou, L., Benzhao He & Jiachang H. 2013. Amphibious fluorescent carbon dots: one step green synthesis and application for light-emitting polymer nanocomposites, Chem. Commun. 49 :8078-8080.

Zhu, C., Junfeng Z., & Shaojun D. 2012. Bifunctional fluorescent carbon nanodots: green synthesisviasoy milk and application as metal-free electrocatalysts for oxygen reduction, Chem. Commun. 48 : 9367–9369.

Published
2015-08-26
Section
Articles