Analysis of Carbon Footprint and Water Footprint in Laundry MSMEs Business Using Life Cycle Assessment

Authors

  • Putri Alifa Kholil Ilmu Lingkungan, Universitas Negeri Semarang Author
  • Abdul Jabbar Ilmu Lingkungan, Universitas Negeri Semarang Author
  • Dhia Sasmita Lantip Master of Science in Sustainability Management, Columbia University Author
  • Nana Jedy Darpawanto PT Sinergi Enviro Nusantara Author
  • Litasari Aldila Aribowo Pendidikan IPA, Universitas Negeri Semarang Author

DOI:

https://doi.org/10.15294/jese.v5i1.24807

Keywords:

LCA, Impact Assessment, Carbon Footprint, Water Footprint, Laundry

Abstract

Laundry MSMEs are resource-intensive, consuming significant electricity and water while discharging wastewater with high concentrations of detergent residues. Accordingly, assessing their environmental impacts is essential to support sustainable practices in the laundry sector. This study aims to quantify the carbon footprint and water footprint of a laundry MSME, identify the hotspot, and propose mitigation strategies. A gate-to-gate Life Cycle Assessment (LCA) was conducted using SimaPro software. Impact assessment applied IPCC 2021 GWP100 for carbon footprint and AWARE methodology for water footprint. The result shows that laundering 1 ton of clothes generates 5,072 kg CO₂-eq and 687 m³ of water use. The washing process is identified as the main hotspot, contributing 3,470 kg CO₂-eq (68% of total emissions) and 654 m³ (95% of total water use). These findings highlight the need for targeted interventions at the washing stage to reduce environmental impacts and enhance resource efficiency in the laundry sector.

References

Abagnato, S., Rigamonti, L., & Grosso, M. (2024). Life cycle assessment applications to reuse, recycling and circular practices for textiles: A review. Waste Management, 182, 74–90. https://doi.org/https://doi.org/10.1016/j.wasman.2024.04.016

Aqilah, A., Kirana, R., Susanto, H., Putri, N., Sari, M., & Suryawan, I. W. (2023). Laundry Effluent Environmental Impact Potential Analysis using Life Cycle Assessment Approach. ICO-SEID, 5. https://doi.org/10.4108/eai.23-11-2022.2341591

Baldini, C., Gardoni, D., & Guarino, M. (2017). A critical review of the recent evolution of Life Cycle Assessment applied to milk production. Journal of Cleaner Production, 140, 421–435. https://doi.org/10.1016/J.JCLEPRO.2016.06.078

Boulay, A. M., Bare, J., Benini, L., Berger, M., Lathuillière, M. J., Manzardo, A., Margni, M., Motoshita, M., Núñez, M., Pastor, A. V., Ridoutt, B., Oki, T., Worbe, S., & Pfister, S. (2018). The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). International Journal of Life Cycle Assessment, 23(2), 368–378. https://doi.org/10.1007/S11367-017-1333-8/FIGURES/2

Coelho Junior, L. M., de Lourdes da Costa Martins, K., & Carvalho, M. (2019). Carbon Footprint Associated with Firewood Consumption in Northeast Brazil: An Analysis by the IPCC 2013 GWP 100y Criterion. Waste and Biomass Valorization, 10(10), 2985–2993. https://doi.org/10.1007/S12649-018-0282-1/TABLES/3

De Souza Grilo, M. M., Fortes, A. F. C., De Souza, R. P. G., Silva, J. A. M., & Carvalho, M. (2018). Carbon footprints for the supply of electricity to a heat pump: Solar energy vs. electric grid. Journal of Renewable and Sustainable Energy, 10(2). https://doi.org/10.1063/1.4997306/285551

Hauschild, M. Z., Bonou, A., & Olsen, S. I. (2018). Life Cycle Interpretation. Life Cycle Assessment: Theory and Practice, 323–334. https://doi.org/10.1007/978-3-319-56475-3_12

Hayek, J., El Bachawati, M., & Manneh, R. (2021). Life cycle assessment and water footprint scarcity of yogurt. Environment, Development and Sustainability, 23(12), 18362–18393. https://doi.org/10.1007/S10668-021-01445-6/FIGURES/14

Institute for Essential Services Reform. (2024). Strategic Communication and Advocacy Plan in Promoting Low Carbon Solutions Adoption for Indonesia’s Large Industries & Small-Medium Industries Institute for Essential Services Reform (Issue 48).

Jabbar, A., Amalia, A. V., Haris, A., Dewi, N. R., & Abdullatif, M. (2024). Potensi Spirulina platensis sebagai Agen Remediasi Air Limbah Laundry. Jurnal Ilmu Lingkungan, 22(5), 1224–1231. https://doi.org/10.14710/jil.22.5.1224-1231

John, J., Collins, M., O’flynn, K., Briggs, T., Gray, W., & McGrath, J. (2024). Carbon footprint of hospital laundry: a life-cycle assessment. BMJ Open, 14(2), e080838.

John, J., Collins, M., O’Flynn, K., Briggs, T., Gray, W., & McGrath, J. (2024). Carbon footprint of hospital laundry: a life-cycle assessment. BMJ Open, 14(2), e080838. https://doi.org/10.1136/BMJOPEN-2023-080838

Jørgensen, K. R., Villanueva, A., & Wenzel, H. (2004). Use of life cycle assessment as decision-support tool for water reuse and handling of residues at a Danish industrial laundry. Waste Management & Research, 22(5), 334–345.

Kholil, P. A., Arief Budihardjo, M., Fuad, M., & Karno, K. (2022). Penilaian Daur Hidup Proses Distribusi BBM di PT Pertamina (Persero) Fuel Terminal Parepare. Jurnal Ilmu Lingkungan, 20(3), 685–695. https://doi.org/10.14710/JIL.20.3.685-695

Kim, S., & Park, J. (2020). Comparative Life Cycle Assessment of Multiple Liquid Laundry Detergent Packaging Formats. Sustainability 2020, Vol. 12, Page 4669, 12(11), 4669. https://doi.org/10.3390/SU12114669

Kobayashi, Y., Ashbolt, N. J., Davies, E. G. R., & Liu, Y. (2020). Life cycle assessment of decentralized greywater treatment systems with reuse at different scales in cold regions. Environment International, 134, 105215.

Koerner, M. (2010). LCA of Clothes Washing Options for City West Water’s Residential Customers.

Kundariati, M., Ibrohim, I., Rohman, F., Razak, S. A., & Nida, S. (2025). Is the Climate Change being Real? A Case Study of College Students’ Climate Change Perception at Universiti Malaya. Journal of Environmental and Science Education, 5(1), 19–29. https://doi.org/10.15294/JESE.V5I1.2349

Lutterbeck, C. A., Machado, Ê. L., Sanchez-Barrios, A., Silveira, E. O., Layton, D., Rieger, A., & Lobo, E. A. (2020). Toxicity evaluation of hospital laundry wastewaters treated by microbial fuel cells and constructed wetlands. Science of The Total Environment, 729, 138816. https://doi.org/10.1016/J.SCITOTENV.2020.138816

Mahath, C. S., Mophin Kani, K., & Dubey, B. (2019). Gate-to-gate environmental impacts of dairy processing products in Thiruvananthapuram, India. Resources, Conservation and Recycling, 141, 40–53. https://doi.org/10.1016/J.RESCONREC.2018.09.023

Mezzanotte, V., Venturelli, S., Paoli, R., Collina, E., & Romagnoli, F. (2025). Life Cycle Assessment of an industrial laundry: A case study in the Italian context. Cleaner Environmental Systems, 16, 100246. https://doi.org/https://doi.org/10.1016/j.cesys.2024.100246

Na, Y., Lee, M. S., Lee, J. W., & Jeong, Y. H. (2020). Wind energy harvesting from a magnetically coupled piezoelectric bimorph cantilever array based on a dynamic magneto-piezo-elastic structure. Applied Energy, 264, 114710. https://doi.org/10.1016/J.APENERGY.2020.114710

Oarga-Mulec, A., Turk, J., Gerbec, P., Jenssen, P. D., Malovrh Rebec, K., & Valant, M. (2023). Life cycle assessment of black and greywater treatment solutions for remote and sensitive areas. Sustainability, 15(4), 3832.

Rodríguez, C., Sánchez, R., Rebolledo, N., Schneider, N., Serrano, J., & Leiva, E. (2021). Life cycle assessment of greywater treatment systems for water-reuse management in rural areas. Science of the Total Environment, 795, 148687.

Shi, K. W., Wang, C. W., & Jiang, S. C. (2018). Quantitative microbial risk assessment of Greywater on-site reuse. Science of The Total Environment, 635, 1507–1519. https://doi.org/10.1016/J.SCITOTENV.2018.04.197

Tomšič, B., Ofentavšek, L., & Fink, R. (2024). Toward sustainable household laundry. Washing quality vs. environmental impacts. International Journal of Environmental Health Research, 34(2), 1011–1022.

Umbu Lolo, E., Dedu Ngalung, A., & Outhor, C. (2023). Analysis of the Environmental Impact of Sugarcane Cultivation on Ecotoxicity, Land Use Competition and Depletion of abiotic resources with Life Cycle Assessment (Case Study: Madukismo Sugar Factory, Yogyakarta, Indonesia). Journal of Environmental and Science Education, 3(2), 107–118. https://doi.org/10.15294/JESE.V3I2.69712

Van de Walle, A., Kim, M., Alam, M. K., Wang, X., Wu, D., Dash, S. R., Rabaey, K., & Kim, J. (2023). Greywater reuse as a key enabler for improving urban wastewater management. Environmental Science and Ecotechnology, 16, 100277.

World Meteorological Organization. (2025). January 2025 sees record global temperatures despite La Nina. WMO. https://wmo.int/media/news/january-2025-sees-record-global-temperatures-despite-la-nina

Zairinayati, Z. R., & Shatriadi, H. (2019). Biodegradasi fosfat pada limbah laundry menggunakan bakteri consorsium pelarut fosfat. Jurnal Kesehatan Lingkungan Indonesia, 18(1), 57–61.

Downloads

Published

2025-04-25

Article ID

24807