Concrete Brick Wasted Material Substitution Performance: Role of Fly Ash, Mixture Composition, and Compressive Strength

Authors

  • Dr. Ir. Syahrul. ST., M.Eng Faculty of Engineering, University of 17 August 1945 Samarinda Author https://orcid.org/0000-0002-2449-9534
  • Amir Faculty of Engineering, University of 17 August 1945 Samarinda Author

DOI:

https://doi.org/10.15294/jtsp.v27i2.19331

Keywords:

Local sand, Fly ash, Characteristics, Paving, Compressive strength

Abstract

The optimization of wasted materials, especially local fly ash, provides space to be used as a construction material with the potential to partially replace cement without reducing the mechanical strength of concrete bricks to a proportion of 20%. Using waste materials like fly ash will provide economic value, environmental sustainability, and strength and durability. A mixture of local sand, PCC cement, and fly ash material is 0%, 5%, 10%, 15%, and 20%. Concrete bricks or commonly called paving blocks are products with sand, water, and cement compositions, as well as waste materials, the installation and maintenance of concrete bricks is very easy and can be formed with various variations that provide aesthetic aspects, the mechanical parameters of concrete bricks are 3, 14, and 28 days old compressive strength tests with a total of 75 samples with a quality classification D. Weight ratio 1:4 cement,  sand and cement water 0.58. The weight of the cement determines the amount of fly ash. The performance of fly ash waste-substitution concrete bricks by 10% produced a quality of 11,674 MPa in 28 days.

Downloads

Download data is not yet available.

Author Biography

  • Dr. Ir. Syahrul. ST., M.Eng, Faculty of Engineering, University of 17 August 1945 Samarinda

    Best Regards

References

[1] National Standardization Agency. (1996). SNI 03 0691 1996. Paving Block (Bata Beton) Jakarta: National Standardization Agency.

[2] Shah, S. H. A., Ali, B., Ahmed, G. H., Tirmazi, S. M. T., El Ouni, M. H., & Hussain, I. (2022). Effect of recycled steel fibers on precast paving blocks' mechanical strength and impact toughness. Case Studies in Construction Materials, 16(March), 1–11. https://doi.org/10.1016/j.cscm.2022.e01025

[3] Silva, W. B. C., Barroso, S. H. A., Cabral, A. E. B., Stefanutti, R., & Picado-Santos, L. G. (2023). Assessment of concrete road paving blocks with coal bottom ash: Physical and mechanical characterization. Case Studies in Construction Materials, 18(March). https://doi.org/10.1016/j.cscm.2023.e02094

[4] Hussian, I., Ali, B., Rashid, M. U., Amir, M. T., Riaz, S., & Ali, A. (2021). Engineering properties of factory-manufactured paving blocks utilizing steel slag as cement replacement. Case Studies in Construction Materials, 15(August). https://doi.org/10.1016/j.cscm.2021.e00755

[5] Ju, M., Rashid, K., Zafar, I., & Ltifi, M. (2023). Developing FA-based cementless binder composite by opting for sustainable technology: Application of brick and paving block. Engineering Science and Technology, an International Journal, 48(June). https://doi.org/10.1016/j.jestch.2023.101580

[6] Al-Kheetan, M. J. (2022). Properties of lightweight pedestrian paving blocks incorporating wheat straw: Micro-to macro-scale investigation. Results in Engineering, 16(November). https://doi.org/10.1016/j.rineng.2022.100758

[7] Djamaluddin, A. R., Caronge, M. A., Tjaronge, M. W., Lando, A. T., & Irmawaty, R. (2020). Evaluation of sustainable concrete paving blocks incorporating processed waste tea ash. Case Studies in Construction Materials, 12. https://doi.org/10.1016/j.cscm.2019.e00325

[8] Wang, X., Chin, C. S., & Xia, J. (2023). Study on the properties variation of recycled concrete paving block containing multiple waste materials. Case Studies in Construction Materials, 18(October 2022). https://doi.org/10.1016/j.cscm.2022.e01803

[9] Peraturan Beton Bertulang Indonesia. (1971). PBI N.I – 2 Bandung: Peraturan Beton Bertulang Indonesia

[10] Syahrul, S. (2020). Karakteristik Pasir Lokal dan Fly Ash Terhadap Kuat Tekan Bata Beton. Kurva S : Jurnal Keilmuan Dan Aplikasi Teknik Sipil, 8(3), 140. https://doi.org/10.31293/teknikd.v8i2.6221

[11] Khan, M. A., Ayub Khan, S., Khan, B., Shahzada, K., Althoey, F., & Deifalla, A. F. (2023). Investigating the feasibility of producing sustainable and compatible binder using marble waste, fly ash, and rice husk ash: A comprehensive research for material characteristics and production. Results in Engineering, 20(September). https://doi.org/10.1016/j.rineng.2023.101435

[12] Pemerintah Republik Indonesia. (2021). Peraturan Pemerintah Nomor 22 Tahun 2021 tentang Pedoman Perlindungan dan Pengelolaan Lingkungan Hidup. Sekretariat Negara Republik Indonesia, 1(078487A), 483. http://www.jdih.setjen.kemendagri.go.id

[13] Lankapati, H. M., Lathiya, D. R., Choudhary, L., Dalai, A. K., & Maheria, K. C. (2023). Modification and characterization of Mordenite zeolite derived from waste coal fly ash and its application as a heterogeneous catalyst for the n-butyl levulinate synthesis. In Catalysis Communications (Vol. 183). https://doi.org/10.1016/j.catcom.2023.106772

[14] Pangestuti, E. K., Haryadi, B., Purnopo, A., Rizqina, F., Aditya, T., & Eka, M. W. (2024). Utilization of Rembang PLTU Coal Burning Waste for Paving Blocks Material. 26(2), 38–45.

[15] Jayaranjan, M. L. D., van Hullebusch, E. D., & Annachhatre, A. P. (2014). Reuse options for coal fired power plant bottom ash and fly ash. Reviews in Environmental Science and Biotechnology, 13(4), 467–486. https://doi.org/10.1007/s11157-014-9336-4

[16] Sogabe, T., Shoji, Y., Miyashita, N., Farrell, D. J., Shiba, K., Hong, H., & Okada, Y. (2023). Next Materials. 1(April).

[17] Patil, S., Ramesh, B., Sathish, T., Saravanan, A., Almujibah, H., Panchal, H., Makki, E., & Giri, J. (2024). Evaluation and optimization of mechanical properties of laterized concrete containing fly ash and steel fiber using Taguchi robust design method. January 2023. https://doi.org/10.1016/j.aej.2023.12.009

[18] Feng, S., Zhang, X., Xu, L., Tao, W., & Duan, G. (2024). Correlation analysis of various characteristics of fly ash based on particle separation. Case Studies in Construction Materials, 20(September 2023), 1–15. https://doi.org/10.1016/j.cscm.2023.e02785

[19] Aboustait, M., Kim, T., Ley, M. T., & Davis, J. M. (2016). Physical and chemical characteristics of fly ash using automated scanning electron microscopy. Construction and Building Materials, 106, 1–10. https://doi.org/10.1016/j.conbuildmat.2015.12.098

[20] Mohamed, A. A. M. S., Yuan, J., Al-Ajamee, M., Dong, Y., Ren, Y., & Hakuzweyezu, T. (2023). Improvement of expansive soil characteristics stabilized with sawdust ash, high calcium fly ash and cement. Case Studies in Construction Materials, 18(November 2022). https://doi.org/10.1016/j.cscm.2023.e01894

[21] Alterary, S. S., & Marei, N. H. (2021). Journal of King Saud University – Science Fly ash properties , characterization , and applications : A review. Journal of King Saud University - Science, 33(6), 101536. https://doi.org/10.1016/j.jksus.2021.101536

[22] Opiso, E. M., Supremo, R. P., & Perodes, J. R. (2019). Effects of coal fly ash and fine sawdust on the performance of pervious concrete. Heliyon, 5(11). https://doi.org/10.1016/j.heliyon.2019.e02783

[23] Awolusi, T., Taiwo, A., Aladegboye, O., Oguntayo, D., & Akinkurolere, O. (2022). Optimisation of quinary blended supplementary cementitious material for eco-friendly paving unit using taguchi orthogonal array design. Materials Today: Proceedings, 65, 2221–2227. https://doi.org/10.1016/j.matpr.2022.06.263

[24] Olofinnade, O., Morawo, A., Okedairo, O., & Kim, B. (2021). Solid waste management in developing countries: Reusing of steel slag aggregate in eco-friendly interlocking concrete paving blocks production. Case Studies in Construction Materials, 14(2021). https://doi.org/10.1016/j.cscm.2021.e00532

[25] Indriyantho, B. R., Purwanto, P., & Riko, R. (2023). Mechanical Performance Analysis of Geopolymer Concrete using Fly Ash Tanjung Jati B for Sustainable Construction Materials. Teknik, 44(1), 39–45. https://doi.org/10.14710/teknik.v44i1.52958

[26] Zou, X., Zhang, Y., Liu, B., Xu, X., Lu, Z., & Jiang, W. (2024). Corrigendum to “Study on mechanical properties and ratio parameter optimization of fly ash wet shotcrete under the influence of multiple factors” Case Stud. Constr. Mater. 19 (2023) e02679 (Case Studies in Construction Materials (2023) 19, (S2214509523008604), (10.1016/j.cscm.2023.e02679)). Case Studies in Construction Materials, 19(August). https://doi.org/10.1016/j.cscm.2023.e02809

[27] Kumar, A., & Kumar, S. (2013). Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization. Construction and Building Materials, 38, 865–871. https://doi.org/10.1016/j.conbuildmat.2012.09.013

[28] Mahdi, S. N., Babu R, D. V., Hossiney, N., & Abdullah, M. M. A. B. (2022). Strength and durability properties of geopolymer paver blocks made with fly ash and brick kiln rice husk ash. Case Studies in Construction Materials, 16(November 2021). https://doi.org/10.1016/j.cscm.2021.e00800

[29] National Standardization Agency. (2002). Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung. SNI 03-2847-2002. Bandung: National Standardization Agency, 251

[30] National Standardization Agency. (1992). SNI 03-2816-1992. Metode pengujian kotoran organik dalam pasir untuk campuran mortar atau beton. Bandung: Indonesian Standardization Agency, 4, 2–3

[31] R, S. R., Arulraj, G. P., Anand, N., Kanagaraj, B., & Lubloy, E. (2024). Developments in the Built Environment Influence of Nano-Fly Ash on mechanical properties , microstructure characteristics and sustainability analysis of Alkali Activated Concrete. 17(February). https://doi.org/10.1016/j.dibe.2024.100352

[32] National Stadarization Agency. (2014). SNI 2460 2014. Spesifikasi Abu Terbang Batu Bara Dan Pozolan. National Standardization Agency.

[33] Souto, M. A., Delesky, E. A., Foster, K. E. O., & Srubar, W. V. (2017). A mathematical model for predicting the carbon sequestration potential of ordinary portland cement (OPC) concrete. Construction and Building Materials, 147, 417–427. https://doi.org/10.1016/j.conbuildmat.2017.04.133

[34] Udawattha, C., Galabada, H., & Halwatura, R. (2017). Mud concrete paving block for pedestrian pavements. Case Studies in Construction Materials, 7(March), 249–262. https://doi.org/10.1016/j.cscm.2017.08.005

[35] Hossain, M. A., Datta, S. D., Akid, A. S. M., Sobuz, M. H. R., & Islam, M. S. (2023). Exploring the synergistic effect of fly ash and jute fiber on the fresh, mechanical and non-destructive characteristics of sustainable concrete. Heliyon, 9(11). https://doi.org/10.1016/j.heliyon.2023.e21708

[36] Momoh, E. O., Osofero, A. I., & Menshykov, O. (2024). Design considerations for eco-friendly palm-strand reinforced concrete for low-cost housing. Case Studies in Construction Materials, 20(December 2023). https://doi.org/10.1016/j.cscm.2024.e02929

[37] Badan Standardisasi Nasional. (2011). Cara Uji Kuat Tekan Beton dengan Benda Uji Silinder, SNI 1974-2011. Badan Standardisasi Nasional Indonesia, 20

[38] Syahrul, S., & Amir. (2023). ANALISA NILAI KONVERSI MUTU BETON PENGUJIAN. 27(2), 472–479. https://doi.org/10.46984/sebatik.v27i2.2407

[39] Syahrul, S. (2022). Kinerja Beton Mengandung Agregat Kasar Daur Ulang Limbah Bongkahan Beton. Jurnal Riset Rekayasa Sipil, 6(1), 33. https://doi.org/10.20961/jrrs.v6i1.63206

[40] ASTM C33, A. (2009). Standard specification for concrete aggregates, ASTM C 33-86. Annual Book of ASTM Standards, i.

[41] Anonim. (2002). Spesifikasi Agregat Halus Untuk Pekerjaan Adukan dan Plesteran Dengan Bahan Dasar Semen. SNI 03-6820-2002 National Standardization Agency, 6820

Downloads

Published

2025-10-31

Article ID

19331